Description
There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move
only on black tiles.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Write a program to count the number of black tiles which he can reach by repeating the moves described above.
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
'.' - a black tile
'#' - a red tile
'@' - a man on a black tile(appears exactly once in a data set)
There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
'.' - a black tile
'#' - a red tile
'@' - a man on a black tile(appears exactly once in a data set)
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).
Sample Input
6 9 ....#. .....# ...... ...... ...... ...... ...... #@...# .#..#. 11 9 .#......... .#.#######. .#.#.....#. .#.#.###.#. .#.#..@#.#. .#.#####.#. .#.......#. .#########. ........... 11 6 ..#..#..#.. ..#..#..#.. ..#..#..### ..#..#..#@. ..#..#..#.. ..#..#..#.. 7 7 ..#.#.. ..#.#.. ###.### ...@... ###.### ..#.#.. ..#.#.. 0 0
Sample Output
45 59 6 13
#include<stdio.h> #include<queue> #include<string.h> #include<iostream> #include<algorithm> using namespace std; int n,m; char a[25][25]; int b[25][25]; int dir[4][2]= {0,1,1,0,0,-1,-1,0}; struct node { int x,y; } w; int sum=0; void bfs(int x,int y) { queue<node> q; int k,i,j; w.x=x; w.y=y; q.push(w); while(!q.empty()) { node s=q.front(); q.pop(); for(int i=0; i<4; i++) { w.x=s.x+dir[i][0]; w.y=s.y+dir[i][1]; if(!b[w.x][w.y]&&a[w.x][w.y]!='#'&&w.x>=1&&w.x<=m&&w.y>=1&&w.y<=n) { sum++; b[w.x][w.y]=1; q.push(w); } } } } int main() { while(~scanf("%d%d",&n,&m)&&(n||m)) { sum=0; int i,j,x=0,y=0; memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); for(i=1; i<=m; ++i) scanf("%s",a[i]+1); for(i=1; i<=m; ++i) for(j=1; j<=n; ++j) { if(a[i][j]=='@') { x=i; y=j; break; } } b[x][y]=1; bfs(x,y); printf("%d ",sum+1); } return 0; } //#include<iostream> //#include<string.h> //#include<stdio.h> //using namespace std; //int direct[4][2] = { -1, 0, 1, 0, 0, 1, 0, -1 }; /*定义方向, 左右,上下*/ //char map[21][21]; /*输入的字符串*/ //bool mark[21][21]; /*标记走过的路程*/ //bool flag; //int W, H; //int Dx, Dy; //记录起始位置@,从这里开始进行搜索 //int ans; //记录满足的个数。初始化为1,因为@也包含在内 ///*****底下是核心算法,主要是从 //上下左右这四个方向进行搜索,注意 //满足搜索的条件是不能越界,不能是#, //还有就是没有搜索过的--》主要是靠mark[i][j] //来实现*******/ //void DFS( int x, int y ) //{ // mark[x][y] = true; // for( int k = 0; k < 4; k ++ ) // { // int p = x + direct[k][0]; // int q = y + direct[k][1]; // if( p >= 0 && q >= 0 && p < H && q < W && !mark[p][q] && map[p][q] != '#' ) // { // ans ++; // DFS( p, q ); // } // } // return; //} // //int main() //{ // int i, j, k; // while( cin >> W >> H && ( W || H ) ) // W -> column, H -> row; // { // memset( mark, false, sizeof( mark ) ); // for( i = 0; i < H; i ++ ) // for( j = 0; j < W; j ++ ) // { // cin >> map[i][j]; // if( map[i][j] == '@' ) // { // Dx = i; // Dy = j; // } // } // ans = 1; // DFS( Dx, Dy ); // cout << ans << endl; // } //} // // // //#include <iostream> // //using namespace std; //char a[50][50]; //int m,n; //int sum; //void dfs(int i,int j){ // a[i][j]='#';//把搜素到的点变成# // sum++;//sum用于计数每搜到一个点就记一下数 // if(i-1>=0&&a[i-1][j]=='.')dfs(i-1,j); // if(i+1<m&&a[i+1][j]=='.')dfs(i+1,j); // if(j-1>=0&&a[i][j-1]=='.')dfs(i,j-1); // if(j+1>=0&&a[i][j+1]=='.')dfs(i,j+1);//四个方向搜素 //} //int main() //{ // while(cin>>n>>m&&(m+n)){ // for(int i=0; i<m; i++) // cin>>a[i]; // sum=0; // for(int i=0; i<m; i++) // for(int j=0; j<n; j++){ // if(a[i][j]=='@') // dfs(i,j); // } // cout<<sum<<endl; // } // return 0; //}