package java.util; import java.util.function.Consumer; public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable { transient int size = 0; transient Node<E> first; transient Node<E> last; public LinkedList() { }
// 传入一个Collection类型的集合,转换为linkedlist类型 public LinkedList(Collection<? extends E> c) { this(); addAll(c); } /** * 将一个element添加为第一个节点 该方法提供给addFirst调用 */ private void linkFirst(E e) {
//当前第一个节点暂存 final Node<E> f = first;
//新建一个节点,pre为空,next为之前的first节点 final Node<E> newNode = new Node<>(null, e, f);
//将当前节点设置为第一个节点,并且判断原来第一个节点是否存在,不存在,则新增节点既是first,也是last节点,
//如果添加之前存在第一个节点,(因为linkedList是一个双向列表,所以需要将原第一个节点的pre设置为新增节点),添加完成之后size,modCount(改变次数)自增 first = newNode; if (f == null) last = newNode; else f.prev = newNode; size++; modCount++; } /** * 同linkFirst,将添加的节点设置为最后一个 */ void linkLast(E e) { final Node<E> l = last; final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; } /** * 在指定节点之前添加一个节点 */ void linkBefore(E e, Node<E> succ) { // assert succ != null;
//暂存指定节点的前一个节点 final Node<E> pred = succ.prev;
//创建新节点,且pre设置为pred,next设置为指定的节点(该新建只是指定了当前节点的pre和next,尚没有指定前一个节点的next和后一个节点的pre) final Node<E> newNode = new Node<>(pred, e, succ);
//一下步骤是指定前一个节点的next和后一个节点的pre succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; } /** * 清掉第一个非空的节点. */ private E unlinkFirst(Node<E> f) { // assert f == first && f != null;
//暂存要清掉节点的item和next,并将f节点的item和next置空(置空是为了帮助清理无用的空间) final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC
//将下一节点置为第一个节点(因是双向列表,所以需要设置节点的pre为空,同时size减小,modCount改变次数增加) first = next; if (next == null) last = null; else next.prev = null; size--; modCount++;
//返回删除节点的item return element; } /** * 同unlinkFirst方法,删除最后一个非空节点. */ private E unlinkLast(Node<E> l) { // assert l == last && l != null; final E element = l.item; final Node<E> prev = l.prev; l.item = null; l.prev = null; // help GC last = prev; if (prev == null) first = null; else prev.next = null; size--; modCount++; return element; } /** * 删除指定节点. */ E unlink(Node<E> x) { // assert x != null;
//暂存要删除节点的 值:item/next/pre final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } /** * 返回列表的第一个节点*/ public E getFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return f.item; } /** * 返回节点的最后一个节点*/ public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } /** * 删除第一个节点,(方法调用私有方法unlinkFirst)*/ public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } /** * 删除最有一个节点*/ public E removeLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return unlinkLast(l); } /** * 添加一个首节点*/ public void addFirst(E e) { linkFirst(e); } /** * 添加尾节点 * * @param e the element to add */ public void addLast(E e) { linkLast(e); } /** * 判断列表中是否存在指定节点*/ public boolean contains(Object o) { return indexOf(o) != -1; } /** * 列表大小*/ public int size() { return size; } /** * 添加尾节点 **/ public boolean add(E e) { linkLast(e); return true; } /**删除链表中的指定值*/ public boolean remove(Object o) { if (o == null) {
//循环列表,将列表中null删除 for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else {
//循环列表,删除列表中item为o的节点 for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * 构造函数调用,将一个collection类型的集合转换成一个linkedlist类型 */ public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } /** * index:范围在【0-size】,当为0是,将集合中的节点添加的linkedlist的开头
不为0是,则添加到第index位置*/ public boolean addAll(int index, Collection<? extends E> c) {
//校验index是否在[0,size]之间,不再则报错 checkPositionIndex(index); Object[] a = c.toArray(); int numNew = a.length; if (numNew == 0) return false; //index==size是 添加到最后 Node<E> pred, succ; if (index == size) { succ = null; pred = last; } else {
//暂存指定位置的节点,之后将该节点设置到新增集合节点中的后边 succ = node(index); pred = succ.prev; }
//循环设置新节点,并将pre的next设置为新增节点 for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node<E> newNode = new Node<>(pred, e, null); if (pred == null) first = newNode; else pred.next = newNode;
//为下一此循环判断,赋值 准备 pred = newNode; } if (succ == null) { last = pred; } else { pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } /**清空链表*/ public void clear() { // Clearing all of the links between nodes is "unnecessary", but: // - helps a generational GC if the discarded nodes inhabit // more than one generation // - is sure to free memory even if there is a reachable Iterator
//节点全都置null,是为了方便释放内存 for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } // Positional Access Operations /** * 获取指定位置的节点值*/ public E get(int index) {
//判断index是否合法 checkElementIndex(index);
//node方法内部循环获取节点 return node(index).item; } /** * 替换指定位置的节点,并返回旧节点的item*/ public E set(int index, E element) { checkElementIndex(index); Node<E> x = node(index); E oldVal = x.item; x.item = element; return oldVal; } /**在指定位置添加节点*/ public void add(int index, E element) {
//校验位置是否合法 checkPositionIndex(index); //index==size的话,表明指定的位置是在列表的最后 if (index == size) linkLast(element); else linkBefore(element, node(index)); } /**删除指定位置的节点*/ public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } /** * 判断指定位置是否存在一个节点(因为size表明链表的大小,只有index在[0,size]之间,表明指定index存在一个节点). */ private boolean isElementIndex(int index) { return index >= 0 && index < size; } /**判断指定位置是否合法(加入要新增节点,节点的位置只能在0-size之间,首尾位置也是可插入位置,合法) */ private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 返回指定位置的节点 */ Node<E> node(int index) { // assert isElementIndex(index); //使用二分模式 (减少内存耗费) if (index < (size >> 1)) { Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } // Search Operations /** * 返回指定对象在链表中第一次出现的位置,没有则返回-1*/ public int indexOf(Object o) { int index = 0; if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } /** * 返回一个对象在链表中最后一次出现的位置*/ public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } // Queue operations. /** * 返回一个链表的第一个节点 * @since 1.5 */ public E peek() { final Node<E> f = first; return (f == null) ? null : f.item; } /** * 获取第一个节点 如果链表为空则会爆出异常*/ public E element() { return getFirst(); } /** * 返回第一个节点,并且将此在链表中删除*/ public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } /** * 删除第一个节点*/ public E remove() { return removeFirst(); } /** * 在链表末尾添加一个节点*/ public boolean offer(E e) { return add(e); } // Deque operations /** * 在链表开头添加一个节点*/ public boolean offerFirst(E e) { addFirst(e); return true; } /** * Inserts the specified element at the end of this list. * * @param e the element to insert * @return {@code true} (as specified by {@link Deque#offerLast}) * @since 1.6 */ public boolean offerLast(E e) { addLast(e); return true; } /** * 返回第一个节点的item*/ public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } /** * 返回最有一个节点的item*/ public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } /** * 删除第一个节点,并返会删除的节点*/ public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } /** * 删除最有一个节点,并返回节点*/ public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } public void push(E e) { addFirst(e); } public E pop() { return removeFirst(); } /** * 删除链表中的第一个o*/ public boolean removeFirstOccurrence(Object o) { return remove(o); } /** * 删除链表中最后一个*/ public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * 返回指定位置之后的一个迭代器*/ public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator<E> { private Node<E> lastReturned; private Node<E> next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } private static class Node<E> { E item; Node<E> next; Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } /** * @since 1.6 */ public Iterator<E> descendingIterator() { return new DescendingIterator(); } /** * Adapter to provide descending iterators via ListItr.previous */ private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns a shallow copy of this {@code LinkedList}. (The elements * themselves are not cloned.) * * @return a shallow copy of this {@code LinkedList} instance */ public Object clone() { LinkedList<E> clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list * in proper sequence */ public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } /** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array. If the list fits * in the specified array, it is returned therein. Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * * <p>If the list fits in the specified array with room to spare (i.e., * the array has more elements than the list), the element in the array * immediately following the end of the list is set to {@code null}. * (This is useful in determining the length of the list <i>only</i> if * the caller knows that the list does not contain any null elements.) * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a list known to contain only strings. * The following code can be used to dump the list into a newly * allocated array of {@code String}: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream * (that is, serializes it). * * @serialData The size of the list (the number of elements it * contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } /** * Reconstitutes this {@code LinkedList} instance from a stream * (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@link Spliterator} over the elements in this * list. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#ORDERED}. Overriding implementations should document * the reporting of additional characteristic values. * * @implNote * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} * and implements {@code trySplit} to permit limited parallelism.. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator<E> spliterator() { return new LLSpliterator<E>(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator<E> implements Spliterator<E> { static final int BATCH_UNIT = 1 << 10; // batch array size increment static final int MAX_BATCH = 1 << 25; // max batch array size; final LinkedList<E> list; // null OK unless traversed Node<E> current; // current node; null until initialized int est; // size estimate; -1 until first needed int expectedModCount; // initialized when est set int batch; // batch size for splits LLSpliterator(LinkedList<E> list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList<E> lst; if ((s = est) < 0) { if ((lst = list) == null) s = est = 0; else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } public long estimateSize() { return (long) getEst(); } public Spliterator<E> trySplit() { Node<E> p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) n = s; if (n > MAX_BATCH) n = MAX_BATCH; Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } public void forEachRemaining(Consumer<? super E> action) { Node<E> p; int n; if (action == null) throw new NullPointerException(); if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); } public boolean tryAdvance(Consumer<? super E> action) { Node<E> p; if (action == null) throw new NullPointerException(); if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }
遍历:
链表的遍历过程也很简单,和查找过程类似,我们从头节点往后遍历就行了。但对于 LinkedList 的遍历还是需要注意一些,不然可能会导致代码效率低下。通常情况下,我们会使用 foreach 遍历 LinkedList,而 foreach 最终转换成迭代器形式。所以分析 LinkedList 的遍历的核心就是它的迭代器实现
我们都知道 LinkedList 不擅长随机位置访问,如果大家用随机访问的方式遍历 LinkedList,效率会很差。比如下面的代码:
List<Integet> list = new LinkedList<>(); list.add(1) list.add(2) ...... for (int i = 0; i < list.size(); i++) { Integet item = list.get(i); //这种遍历方式 每次获取指定索引的元素 都会从开头重新寻找到指定位置,验证影响效率 // do something }