• 二叉排序树查找


    构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除的效率。

    那么什么是二叉排序树呢?二叉排序树具有以下几个特点。

    1,若根节点有左子树,则左子树的所有节点都比根节点小。

    2,若根节点有右子树,则右子树的所有节点都比根节点大。

    3,根节点的左,右子树也分别为二叉排序树。

    下面是二叉排序树的图示,通过图可以加深对二叉排序树的理解。

    ds38

    下面是二叉排序树常见的操作及思路。

    1,插入节点

    思路:比如我们要插入数字20到这棵二叉排序树中。那么步骤如下:

    1) 首先将20与根节点进行比较,发现比根节点小,所以继续与根节点的左子树30比较。

    2) 发现20比30也要小,所以继续与30的左子树10进行比较。

    3) 发现20比10要大,所以就将20插入到10的右子树中。

    此时二叉排序树效果如图:

    ds38

    2,查找节点

    比如我们要查找节点10,那么思路如下:

    1) 还是一样,首先将10与根节点50进行比较大小,发现比根节点要小,所以继续与根节点的左子树30进行比较。

    2) 发现10比左子树30要小,所以继续与30的左子树10进行比较。

    3) 发现两值相等,即查找成功,返回10的位置。

    过程与插入相同,这里就不贴图了。

    3,删除节点

    删除节点的情况相对复杂,主要分以下三种情形:

    1) 删除的是叶节点(即没有孩子节点的)。比如20,删除它不会破坏原来树的结构,最简单。如图所示。

    ds38

    2) 删除的是单孩子节点。比如90,删除它后需要将它的孩子节点与自己的父节点相连。情形比第一种复杂一些。

    ds38

    3) 删除的是有左右孩子的节点。比如根节点50,这里有一个问题就是删除它后将谁做为根节点的问题?利用二叉树的中序遍历,就是右节点的左子树的最左孩子

    ds38

    分析完了,有了思路之后,下面就开始写代码来实现这些功能了。

    C#版:

    复制代码
    namespace DS.BLL
    {
        /// <summary>
        /// Description:二叉排序树的常见操作
        /// Author:McgradyLu
        /// Time:8/24/2013 4:12:18 PM
        /// </summary>
        public class BSTreeBLL
        {
            /// <summary>
            /// 创建二叉排序树
            /// </summary>
            /// <param name="list"></param>
            /// <returns></returns>
            public static BSTree Create(List<int> list)
            { 
                //创建根节点
                BSTree bsTree = new BSTree()
                { 
                    Data=list[0],
                    Left=null,
                    Right=null
                };
    
                //将list中的节点一个一个地插入到二叉排序树中
                for (int i = 1; i < list.Count; i++) //注意这里从1开始,因为0位置上元素已经给了根节点
                {
                    bool isExcute = false;
                    Insert(bsTree, list[i], ref isExcute);
                }
                return bsTree;
            }
    
            /// <summary>
            /// 插入节点
            /// </summary>
            /// <param name="bsTree">二叉排序树</param>
            /// <param name="key">待插入值</param>
            /// <param name="isExcute">是否执行了if语句(节点是否插入)</param>
            public static void Insert(BSTree bsTree, int key, ref bool isExcute)
            {
                if (bsTree == null) return;
    
                //如果小于根节点,遍历左子树,否则遍历右子树(找到当前要插入节点的父节点)
                if (key < bsTree.Data) Insert(bsTree.Left, key, ref isExcute);
                else Insert(bsTree.Right, key, ref isExcute);
    
                if (!isExcute)
                {
                    //创建当前节点
                    BSTree current = new BSTree() { 
                        Data=key,
                        Left=null,
                        Right=null
                    };
    
                    //插入到父节点中
                    if (key < bsTree.Data) bsTree.Left = current;
                    else bsTree.Right = current;
                    isExcute = true;
                }
            }
    
            /// <summary>
            /// 中序遍历
            /// </summary>
            /// <param name="bsTree"></param>
            public static void LDR(BSTree bsTree)
            {
                if (bsTree != null)
                {
                    //遍历左子树
                    LDR(bsTree.Left);
    
                    //输出节点数据
                    Console.Write(bsTree.Data+" ");
    
                    //遍历右子树
                    LDR(bsTree.Right);
                }
            }
    
            /// <summary>
            /// 查找节点
            /// </summary>
            /// <param name="bsTree">待查找的二叉排序树</param>
            /// <param name="key"></param>
            /// <returns>true表示查找成功,false表示查找失败</returns>
            public static bool Search(BSTree bsTree, int key)
            {
                //遍历完没有找到,查找失败
                if (bsTree == null) return false;
    
                //要查找的元素为当前节点,查找成功
                if (key == bsTree.Data) return true;
    
                //继续去当前节点的左子树中查找,否则去当前节点的右子树中查找
                if (key < bsTree.Data) return Search(bsTree.Left, key);
                else return Search(bsTree.Right,key);
            }
    
            /// <summary>
            /// 删除节点
            /// </summary>
            /// <param name="bsTree"></param>
            /// <param name="key"></param>
            public static void Delete(ref BSTree bsTree, int key)
            {
                //空树
                if (bsTree == null) return;
    
                //判断是否是要删除的节点
                if (key == bsTree.Data)
                { 
                    //第一种情况:叶子节点(没有孩子节点)
                    if (bsTree.Left == null && bsTree.Right == null)
                    {
                        bsTree = null;
                        return;
                    }
    
                    //第二种情况:仅有左子树
                    if (bsTree.Left != null && bsTree.Right == null)
                    {
                        bsTree = bsTree.Left;
                        return;
                    }
    
                    //第三种情况:仅有右子树
                    if (bsTree.Left == null && bsTree.Right != null)
                    {
                        bsTree = bsTree.Right;
                        return;
                    }
    
                    //第四种情况:有左,右子树
                    if (bsTree.Left != null && bsTree.Right != null)
                    { 
                        //利用中序遍历找到右节点的左子树的最左孩子
                        var node = bsTree.Right;
                        while (node.Left != null)
                        {
                            node = node.Left;
                        }
    
                        node.Left = bsTree.Left;
                        if (node.Right == null)
                        {
                            Delete(ref bsTree,node.Data);
                            node.Right = bsTree.Right;
                        }
                        bsTree = node;
                    }
                }
    
                //遍历找到要删除的节点
                if (key < bsTree.Data)
                {
                    Delete(ref bsTree.Left, key);
                }
                else
                {
                    Delete(ref bsTree.Right, key);
                }
            }
        }
    
        /// <summary>
        /// 封装二叉排序树结构
        /// </summary>
        public class BSTree
        {
            public int Data;
    
            public BSTree Left;
    
            public BSTree Right;
        }
    }
    
    namespace BSTSearch.CSharp
    {
        class Program
        {
            static void Main(string[] args)
            {
                List<int> list = new List<int> { 50,30,70,10,40,90,80};
    
                Console.WriteLine("***************创建二叉排序树***************");
                BSTree bsTree = BSTreeBLL.Create(list);
                Console.Write("中序遍历的原始数据:
    ");
                BSTreeBLL.LDR(bsTree);
    
                Console.WriteLine("
    ********************查找节点********************");
                Console.WriteLine("元素40是否在树中:{0}",BSTreeBLL.Search(bsTree,40));
    
                Console.WriteLine("
    ********************插入节点********************");
                Console.WriteLine("将元素20插入到树中");
                bool isExcute=false;
                BSTreeBLL.Insert(bsTree,20,ref isExcute);
                Console.Write("中序遍历后:
    ");
                BSTreeBLL.LDR(bsTree);
    
                Console.WriteLine("
    ********************删除节点1********************");
                Console.WriteLine("删除叶子节点20,
    中序遍历后:
    ");
                BSTreeBLL.Delete(ref bsTree,20);
                BSTreeBLL.LDR(bsTree);
    
                Console.WriteLine("
    ********************删除节点2********************");
                Console.WriteLine("删除单孩子节点90,
    中序遍历后:
    ");
                BSTreeBLL.Delete(ref bsTree, 90);
                BSTreeBLL.LDR(bsTree);
    
                Console.WriteLine("
    ********************删除节点2********************");
                Console.WriteLine("删除根节点50,
    中序遍历后:
    ");
                BSTreeBLL.Delete(ref bsTree, 50);
                BSTreeBLL.LDR(bsTree);
    
                Console.ReadKey();
            }
        }
    }
    复制代码

    程序输出结果如图:

    ds39

  • 相关阅读:
    flexible
    arcgis
    vue 语法糖
    sass 的安装 编译 使用
    nodeJs
    微信小程序
    linux cgroups 简介
    git命令
    sublime笔记
    工程优化学习(进退法、黄金分割法、二次插值法、三次插值法、最速下降法)
  • 原文地址:https://www.cnblogs.com/nxxshxf/p/5169463.html
Copyright © 2020-2023  润新知