• 朴素贝叶斯


    1.理论基础——条件概率,词集模型、词袋模型

    条件概率:朴素贝叶斯最核心的部分是贝叶斯法则,而贝叶斯法则的基石是条件概率。贝叶斯法则如下:

    词集模型:对于给定文档,只统计某个侮辱性词汇(准确说是词条)是否在本文档出现

    词袋模型:对于给定文档,统计某个侮辱性词汇在本文当中出现的频率,除此之外,往往还需要剔除重要性极低的高频词和停用词。因此,词袋模型更精炼,也更有效。

    2.数据预处理——向量化

    首先,我们需要一张词典,该词典囊括了训练文档集中的所有必要词汇(无用高频词和停用词除外),还需要把每个文档剔除高频词和停用词;

    其次,根据词典向量化每个处理后的文档。具体的,每个文档都定义为词典大小,分别遍历某类(侮辱性和非侮辱性)文档中的每个词汇并统计出现次数;最后,得到一个个跟词典一样大小的向量,这些向量有一个个整数组成,每个整数代表了词典上一个对应位置的词在当下文档中的出现频率。

    最后,统计每一类处理过的文档中词汇总个数,某一个文档的词频向量除以相应类别的词汇总个数,即得到相应的条件概率,如P(x,y|C0)。有了P(x,y|C0)和P(C0),P(C0|x,y)就得到了,用完全一样的方法可以获得P(C1|x,y)。比较它们的大小,即可知道某人是不是大坏蛋,某篇文档是不是侮辱性文档了。

    3.总结

    不同于其它分类器,朴素贝叶斯是一种基于概率理论的分类算法;

    特征之间的条件独立性假设,显然这种假设显得“粗鲁”而不符合实际,这也是名称中“朴素”的由来。然而事实证明,朴素贝叶斯在有些领域很有用,比如垃圾邮件过滤;

    在具体的算法实施中,要考虑很多实际问题。比如因为“下溢”问题,需要对概率乘积取对数;再比如词集模型和词袋模型,还有停用词和无意义的高频词的剔除,以及大量的数据预处理问题,等等;

    总体上来说,朴素贝叶斯原理和实现都比较简单,学习和预测的效率都很高,是一种经典而常用的分类算法。

    文本分类代码如下:

      1 #coding='utf-8'
      2 from numpy import *
      3 import re
      4 
      5 def loadDataSet():
      6     positionList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
      7                  ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
      8                  ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
      9                  ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     10                  ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     11                  ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
     12     classVec = [0,1,0,1,0,1]#1代表侮辱性文字,0表示正常言论
     13     return positionList,classVec
     14 
     15 #创建一个包含在所有文档中出现的不重复词的列表
     16 def createVocabList(dataSet):
     17     vocabSet = set([])
     18     for document in dataSet:
     19         vocabSet = vocabSet | set(document)#两个集合的并集
     20     return list(vocabSet)
     21 
     22 #检查输入单词是否在单词表中,若是,则置为1
     23 def setOfWords2Vec(vocalList,inputSet):
     24     returnVec = [0]*len(vocalList)#创建一个全0向量
     25     for word in inputSet:
     26         if word in vocalList:
     27             returnVec[vocalList.index(word)] = 1
     28         else:
     29             print("the word %s isn't in vocabulary",word)
     30     return returnVec
     31 
     32 #训练函数
     33 def trainNB0(trainMatrix,trainCategory):
     34     #初始化概率
     35     numWords = len(trainMatrix[0])
     36     p1Num = ones(numWords)
     37     p0Num = ones(numWords)
     38     p1Denom = 2.0
     39     p0Denom = 2.0
     40     numTrainDocs = len(trainMatrix)
     41     pAbusive = sum(trainCategory)/float(numTrainDocs)#文章为侮辱类的概率
     42     for i in range(numTrainDocs):
     43         if trainCategory[i] == 1:
     44             p1Num += trainMatrix[i]
     45             p1Denom += sum(trainMatrix[i])
     46         else:
     47             p0Num += trainMatrix[i]
     48             p0Denom += sum (trainMatrix[i])
     49     p1Vect = log(p1Num/p1Denom)#每一个词在类别为侮辱(1)的情况下出现的概率
     50     p0Vect = log(p0Num/p0Denom)
     51     return p0Vect,p1Vect,pAbusive
     52     #向量相加
     53     #对每个元素做除法
     54 
     55 #朴素贝叶斯分类函数
     56 def classifyNB(vec2Classify,p0V,p1V,pAb):
     57     p1 = sum(vec2Classify*p1V) + log(pAb)
     58     p0 = sum(vec2Classify * p0V) + log(1.0 - pAb)
     59     if p1>p0:
     60         return 1
     61     else:
     62         return 0
     63 
     64 #测试
     65 def testingNB():
     66     positionList, classVec = loadDataSet ()
     67     myvocalList = createVocabList (positionList)
     68     trainMat = []
     69     for positionDoc in positionList:
     70         trainMat.append(setOfWords2Vec(myvocalList, positionDoc))
     71     p0V, p1V, pAb = trainNB0 (trainMat, classVec)
     72     testEntry =['me','hehe','hate']
     73     thisDoc = array(setOfWords2Vec(myvocalList,testEntry))
     74     print("类别为",classifyNB(thisDoc,p0V,p1V,pAb))
     75 
     76 #词袋模型
     77 def bagOfWords2VecMN(vocabList, inputSet):
     78     returnVec = [0] * len (vocabList)  # 创建一个全0向量
     79     for word in inputSet:
     80         if word in vocabList:
     81             returnVec[vocabList.index (word)] += 1
     82     return returnVec
     83 
     84 #切分长字符串,比如url,去掉长度大于2的
     85 def textParse(bigString):
     86     # regEx = re.compile('\W*')#w匹配字母或数字或下划线或汉字
     87     # listOfTokens = regEx.split(bigString)
     88 
     89     listOfTokens = re.split(r'W*',bigString)
     90     result = [tok.lower() for tok in listOfTokens if len (tok) > 2]
     91     return result
     92 
     93 #对贝叶斯垃圾邮件分类器进行自动化处理
     94 def spamTest():
     95     docList = []
     96     fullText = []
     97     classList = []
     98     #导入并解析文本文件
     99     for i in range(1,26):
    100         f1 = open('email/spam/%d.txt'%i).read()#read,readline返回字符串,readlines返回list
    101         wordList = textParse(f1)
    102         docList.append(wordList)
    103         fullText.extend(wordList)
    104         classList.append(1)
    105 
    106         f2 = open('email/ham/%d.txt'%i).read()
    107         wordList = textParse(f2)
    108         docList.append(wordList)
    109         fullText.extend(wordList)
    110         classList.append(0)
    111     vocabList = createVocabList(docList)
    112 
    113     #随机构建训练集
    114     testSet = []
    115     trainingSet = list(range(50))
    116     for i in range(10):#随机产生10个在0:49之间的数,还不能重复
    117         randIndex = int(random.uniform(0,len(trainingSet)))#random.uniform(x,y)随机生成在[x,y)范围内的实数
    118         testSet.append(trainingSet[randIndex])
    119         del(trainingSet[randIndex])
    120     print(testSet)#[14, 46, 32, 28, 43, 5, 7, 11, 16, 47]
    121     trainMat = []
    122     trainClasses = []
    123     for docIndex in trainingSet:
    124         trainMat.append(setOfWords2Vec(vocabList,docList[docIndex]))
    125         trainClasses.append(classList[docIndex])
    126     p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    127 
    128     errorCount = 0
    129 
    130     #对测试集分类
    131     for docIndex in testSet:
    132         wordVector = setOfWords2Vec(vocabList,docList[docIndex])
    133         if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
    134             print ("docIndex", docIndex)
    135             errorCount += 1
    136     print("错误率",float(errorCount)/len(testSet))
    137 
    138 if __name__ == '__main__':
    139     spamTest()

    从个人广告中获取区域倾向代码如下:

      1 #coding='utf-8'
      2 from numpy import *
      3 import re
      4 import operator
      5 import feedparser
      6 
      7 #创建一个包含在所有文档中出现的不重复词的列表
      8 def createVocabList(dataSet):
      9     vocabSet = set([])
     10     for document in dataSet:
     11         vocabSet = vocabSet | set(document)#两个集合的并集
     12     return list(vocabSet)
     13 
     14 #检查输入单词是否在单词表中,若是,则置为1
     15 def setOfWords2Vec(vocalList,inputSet):
     16     returnVec = [0]*len(vocalList)#创建一个全0向量
     17     for word in inputSet:
     18         if word in vocalList:
     19             returnVec[vocalList.index(word)] = 1
     20         else:
     21             print("the word %s isn't in vocabulary",word)
     22     return returnVec
     23 
     24 #训练函数
     25 def trainNB0(trainMatrix,trainCategory):
     26     #初始化概率
     27     numWords = len(trainMatrix[0])
     28     p1Num = ones(numWords)
     29     p0Num = ones(numWords)
     30     p1Denom = 2.0
     31     p0Denom = 2.0
     32     numTrainDocs = len(trainMatrix)
     33     pAbusive = sum(trainCategory)/float(numTrainDocs)#文章为侮辱类的概率
     34     for i in range(numTrainDocs):
     35         if trainCategory[i] == 1:
     36             p1Num += trainMatrix[i]
     37             p1Denom += sum(trainMatrix[i])
     38         else:
     39             p0Num += trainMatrix[i]
     40             p0Denom += sum (trainMatrix[i])
     41     p1Vect = log(p1Num/p1Denom)#每一个词在类别为侮辱(1)的情况下出现的概率
     42     p0Vect = log(p0Num/p0Denom)
     43     return p0Vect,p1Vect,pAbusive
     44 
     45 #朴素贝叶斯分类函数
     46 def classifyNB(vec2Classify,p0V,p1V,pAb):
     47     p1 = sum(vec2Classify*p1V) + log(pAb)
     48     p0 = sum(vec2Classify * p0V) + log(1.0 - pAb)
     49     if p1>p0:
     50         return 1
     51     else:
     52         return 0
     53 
     54 #词袋模型
     55 def bagOfWords2VecMN(vocabList, inputSet):
     56     returnVec = [0] * len (vocabList)  # 创建一个全0向量
     57     for word in inputSet:
     58         if word in vocabList:
     59             returnVec[vocabList.index (word)] += 1
     60     return returnVec
     61 
     62 #切分长字符串,比如url,去掉长度大于2的
     63 def textParse(bigString):
     64     listOfTokens = re.split(r'W*',bigString)
     65     result = [tok.lower() for tok in listOfTokens if len (tok) > 2]
     66     return result
     67 
     68 #计算出现频率
     69 def calcMostFreq(vocabList,fullText):
     70     freqDict = {}
     71     for token in vocabList:
     72         freqDict[token] = fullText.count(token)
     73     sortedFreq = sorted(freqDict.items(),key=operator.itemgetter(1),reverse=True)#sorted对于任何可迭代的对象,sort只能对list排序;默认升序
     74     return sortedFreq[:250] #返回重新排序的列表
     75 
     76 #RSS源分类器
     77 def localWords(feed1,feed0):
     78     docList = []
     79     fullText = []
     80     classList = []
     81     lfeed1 = len(feed1['entries'])
     82     lfeed0 = len(feed0['entries'])
     83     minLen = min( lfeed1, lfeed0 )
     84 
     85     # 每次访问一条RSS源
     86     for i in range (minLen):
     87         f1 = feed1['entries'][i]['summary'] # read,readline返回字符串,readlines返回list
     88         wordList = textParse (f1)
     89         docList.append (wordList)
     90         fullText.extend (wordList)
     91         classList.append(1)
     92 
     93         f0 = feed0['entries'][i]['summary']
     94         wordList = textParse (f0)
     95         docList.append (wordList)
     96         fullText.extend (wordList)
     97         classList.append(0)
     98     vocabList = createVocabList (docList)
     99     top30Words = calcMostFreq(vocabList,fullText)#[('not',5),...]
    100 
    101     #去掉出现次数最高的那些词
    102     for pairW in top30Words:
    103         if pairW[0] in vocabList:
    104             vocabList.remove(pairW[0])
    105 
    106     trainingSet = list(range(2*minLen))
    107     testSet = []
    108     # 随机构建训练集
    109     for i in range (20):  # 随机产生20个在0:49之间的数,还不能重复
    110         randIndex = int (random.uniform (0, len (trainingSet)))  # random.uniform(x,y)随机生成在[x,y)范围内的实数
    111         testSet.append (trainingSet[randIndex])
    112         del(trainingSet[randIndex])
    113     trainMat = []
    114     trainClasses = []
    115     for docIndex in trainingSet:
    116         trainMat.append (bagOfWords2VecMN (vocabList, docList[docIndex]))
    117         trainClasses.append (classList[docIndex])
    118     p0V, p1V, pSpam = trainNB0 (array (trainMat), array (trainClasses))
    119     errorCount = 0
    120 
    121     # 对测试集分类
    122     for docIndex in testSet:
    123         wordVector = bagOfWords2VecMN (vocabList, docList[docIndex])
    124         if classifyNB (array (wordVector), p0V, p1V, pSpam) != classList[docIndex]:
    125             errorCount += 1
    126     print("错误率",float(errorCount)/len(testSet))
    127     print("p0V",p0V)
    128     print("p1V",p1V)
    129     return vocabList,p0V,p1V
    130 
    131 #显示地域相关的用词
    132 def getTopWords(ny,sf):
    133     vocabList, psF, pNY = localWords (ny, sf)
    134     topNY =[]
    135     topSF =[]
    136     for i in range(len(psF)):
    137         if psF[i] > -2.0:
    138             topSF.append((vocabList[i],psF[i]))
    139         if pNY[i] > -2.0:
    140             topNY.append((vocabList[i],pNY[i]))
    141     sortedSF = list(sorted(topSF,key=lambda pair: pair[1],reverse=True))
    142     print("----------------------SF-------------------------")
    143     for i in sortedSF:
    144         print(i[0])
    145     sortedNY = sorted(topNY,key=lambda pair: pair[1],reverse=True)
    146     print ("---------------------NY-------------------------")
    147     for i in sortedNY:
    148         print(i[0])
    149 
    150 
    151 if __name__ == '__main__':
    152     # ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
    153     # sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
    154     ny = feedparser.parse('http://news.qq.com/newscomments/rss_comment.xml')
    155     sf = feedparser.parse('http://news.qq.com/newscomments/rss_comment.xml')
    156     getTopWords (ny, sf)
  • 相关阅读:
    leetcode 264: Ugly Number II
    leetcode 260: Single Number III
    leetcode 241: Different Ways to Add Parentheses
    清远市技术学院大学城网
    英德市职业技术学校大学城网
    清远市田家炳中学大学城网
    清远市清城区清城中学大学城网
    清远市第一中学大学城网
    当前最热的技术
    Python 学习视频
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/8948369.html
Copyright © 2020-2023  润新知