• matplotlib---插值画二维、三维图


    一、画二维图

    1.原始数据(x,y)

    import matplotlib.pyplot as plt
    import numpy as np
    
    #数据
    X = np.array(list(i for i in range(6)))
    Y = np.array([10,30,20,50,100,120])

    2.先对横坐标x进行扩充数据量,采用linspace

    #插值
    from scipy.interpolate import spline
    X_new = np.linspace(X.min(),X.max(),300) #300 represents number of points to make between X.min and X.max

    3.采用scipy.interpolate中的spline来对纵坐标数据y进行插值

    由6个扩充到300个

    smooth = spline(X,Y,X_new)
    print(X_new.shape)  #(300,)
    print(smooth.shape)  #(300,)

    4.画图

    #画图
    plt.plot(X_new,smooth)
    plt.show()
    
    插值前 插值后
     

    二、画三维图

    1.载入数据

    # 载入模块
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    import pandas as pd
    import seaborn as sns
    from scipy import interpolate
    
    df_epsilon_alpha = pd.read_excel('实验记录_超参数.xlsx',sheet_name='epsilon_alpha')
    #生成数据
    epsilon = np.array(df_epsilon_alpha['epsilon'].values)
    alpha = np.array(df_epsilon_alpha['alpha'].values)
    Precision = np.array(df_epsilon_alpha['Precision'].values)
    

      

    2.将x和y扩充到想要的大小

    【两种方法:np.arange和np.linspace】

    xnew = np.arange(0.1, 1, 0.09) #左闭右闭每0.09间隔生成一个数
    ynew = np.arange(0.1, 1, 0.09)  
    或者
    x = np.linspace(0.1,0.9,9)#0.1到0.9生成9个数
    y = np.linspace(0.1,0.9,9)

     

    3.对z插值

    x,y原数据:

    x = np.linspace(0.1,0.9,9)
    y = np.linspace(0.1,0.9,9)
    z = Precision

    采用 scipy.interpolate.interp2d函数进行插值

    f = interpolate.interp2d(x, y, z, kind='cubic')

    x,y扩充数据:

    xnew = np.arange(0.1, 1, 0.03)#(31,)
    ynew = np.arange(0.1, 1, 0.03)#(31,)
    znew = f(xnew, ynew)#(31,31) 

    znew为插值后的z

    4.画图

    采用  from mpl_toolkits.mplot3d import Axes3D进行画三维图

    Axes3D简单用法:

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    比如采用plot_trisurf画三维图:

    plot_trisurf(x,y,z)

    plot_trisurf对数据要求是:x.shape = y.shape = z.shape,所以x和y的shape需要修改,采用np.meshgrid,且都为一维数据

    修改x,y,z输入画图函数前的shape

    xx1, yy1 = np.meshgrid(xnew, ynew)#执行之后,xx1.shape=(31,31),yy1.shape=(31,31)
    newshape = (xx1.shape[0])*(xx1.shape[0])
    y_input = xx1.reshape(newshape)
    x_input = yy1.reshape(newshape)
    z_input = znew.reshape(newshape)

    x_input.shape,y_input.shape,z_input.shape=((961,), (961,), (961,))

    画图代码

    #画图
    sns.set(style='ticks')
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot_trisurf(x_input,y_input,z_input,cmap=cm.coolwarm)
    
    plt.xlim((0.1,0.9))
    plt.xticks([0.1,0.3,0.5,0.7,0.9])
    plt.yticks([0.1,0.3,0.5,0.7,0.9])
    ax.set_xlabel(r'$alpha$',fontdict={'color': 'black',
                                 'family': 'Times New Roman',
                                 'weight': 'normal',
                                 'size': 18})
    ax.set_ylabel(r'$epsilon$',fontdict={'color': 'black',
                                 'family': 'Times New Roman',
                                 'weight': 'normal',
                                 'size': 18})
    ax.set_zlabel('precision',fontdict={'color': 'black',
                                 'family': 'Times New Roman',
                                 'weight': 'normal',
                                 'size': 18})
    
    plt.tight_layout()
    # plt.savefig('loc_svg/alpha_epsilon2.svg',dpi=600) #指定分辨率保存
    plt.show()
    
    插值前 插值后
     
  • 相关阅读:
    计算机服务器分类
    二进制和十进制转换
    计算机发展历史
    Linux运维学习第二周记
    Linux运维学习第一周记
    使用正则表达式替换文件内容 分类: python 小练习 2013-08-13 15:07 332人阅读 评论(0) 收藏
    Python 中的 socket 编程 分类: socket 2013-08-10 17:17 377人阅读 评论(0) 收藏
    python简单的socket 服务器和客户端 分类: socket 2013-08-10 16:44 455人阅读 评论(0) 收藏
    Python Socket API 笔记 分类: socket 2013-08-10 15:06 2320人阅读 评论(0) 收藏
    vim 7的 无限回退功能 分类: ubuntu 2013-08-09 14:04 672人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10970682.html
Copyright © 2020-2023  润新知