(A_alpha(x)) (qquad) (a^2+b^2=c^2 ) (qquad) (sumlimits_{m=0}^infty)
(frac{(-1)^m}{m!}) (qquad) (x=frac{-bpmsqrt{b^2-4ac}}{2a}) (qquad) (left(x+a ight)^n=sum_{k=0}^{n}{inom{n}{k}x^ka^{n-k}})
(limlimits_{n ightarrowinfty}{left(1+frac{1}{n} ight)^n})
(limlimits_{n ightarrowinfty}) (qquad) (limlimits_{n ightarrow0}) (qquad) (limlimits_{x ightarrow x_0})
(limlimits_{x ightarrow x_0}f{left(x ight)}=f{left(x_0 ight)})
(Delta y) (qquad) (frac{pi}{2})(qquad) (frac{partial y}{partial x}) (qquad) (Pinom{n}{k}) (qquad) (sqrt[3]{x})
(a^{3}_{ij})
(x eg y )
(int_{0}^{frac{pi}{2}})
(prod_epsilon)
(xle y)
(xge y)
(xapprox y)
(x imes y)
(xpm y)
(xdiv y)
(ain A)
•(fleft(x ight))在(x_0)处(或按(left(x-x_0 ight))的幂展开)的带有佩亚诺余项的n阶泰勒公式→若(x_0=0)→带有佩亚诺余项的麦克劳林公式
(R_nleft(x ight)=oleft(left(x-x_0 ight)^{n} ight))由洛必达法则证出
•(fleft(x ight))在(x_0)处(或按(left(x-x_0 ight))的幂展开)的带有拉格朗日余项的n阶泰勒公式→若(x_0=0)→带有拉格朗日余项的麦克劳林公式
(R_nleft(x ight)=frac{f^{left(n+1 ight)}left(x_i ight)}{left(n+1 ight)!}left(x-x_0 ight)^{n+1})由柯西中值定理证出
latex学习链接:http://www.mohu.org/info/symbols/symbols.htm