Given the Cartesian coordinates of n (> 0) 2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).
Input
The input file may contain multiple test cases. Each test case begins with a line containing a positive integer n (< 1001) indicating the number of points in this test case. Then follows n lines each containing two real numbers giving respectively the x- and y-coordinates of a point. The input terminates with a test case containing a value 0 for n which must not be processed.
Output
For each test case in the input print a line containing the area of the smallest bounding rectangle rounded to the 4th digit after the decimal point.
Sample Input
3
-3.000 5.000
7.000 9.000
17.000 5.000
4
10.000 10.000
10.000 20.000
20.000 20.000
20.000 10.000
0
Sample Output
80.0000
100.0000
#include<bits/stdc++.h>//最小面积外接矩形 #define ll long long const int N = 50007; using namespace std; int n, top; double ans; #define eps 1e-8 int dcmp(double x) { return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); } struct pt { double x, y; pt() {} pt(double x, double y) : x(x), y(y) {} friend bool operator<(const pt &A, const pt &B) { return A.x < B.x || (A.x == B.x && A.y < B.y); } } p[N], ham[N]; pt operator-(const pt &A, const pt &B) { return pt(A.x - B.x, A.y - B.y); } double dot(const pt &A, const pt &B) { return A.x * B.x + A.y * B.y; } double cross(const pt &A, const pt &B) { return A.x * B.y - A.y * B.x; } double lenth(const pt &A) { return sqrt(dot(A, A)); } double node_to_line(pt C, pt A, pt B) { return fabs(cross(C - A, B - A)) / lenth(A - B); } bool cmp(const pt &A, const pt &B) { return dcmp(cross(A - p[1], B - p[1])) < 0 || (dcmp(cross(A - p[1], B - p[1])) == 0 && dcmp(lenth(A - p[1]) - lenth(B - p[1])) < 0); } void get_ham(int n) { for (int i = 2; i <= n; i++) if (p[i] < p[1]) swap(p[i], p[1]); sort(p + 2, p + n + 1, cmp); top = 0; ham[top++] = p[1]; for (int i = 2; i <= n; i++) { while (top >= 2 && dcmp(cross(p[i] - ham[top - 2], ham[top - 1] - ham[top - 2])) <= 0) top--; ham[top++] = p[i]; } } void RC(int top) { ham[top] = ham[0]; int j = 1, k = 1, l = 1; for (int i = 0; i < top; i++) { while (dcmp(cross(ham[j % top] - ham[i], ham[i + 1] - ham[i]) - cross(ham[(j + 1) % top] - ham[i], ham[i + 1] - ham[i])) < 0) j++; k = max(k, i + 1); l = max(l, j); while (dcmp(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1]) - dot(ham[(k + 1) % top] - ham[i + 1], ham[i] - ham[i + 1])) > 0) k++; while (dcmp(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i]) - dot(ham[(l + 1) % top] - ham[i], ham[i + 1] - ham[i])) > 0) l++; double d = lenth(ham[i + 1] - ham[i]); double L = fabs(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1])) / d + fabs(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i])) / d + d; double D = node_to_line(ham[j % top], ham[i], ham[i + 1]); ans = min(ans, L * D); } if (top < 3) ans = 0; } int main() { ios::sync_with_stdio(false); cin.tie(0); while (cin >> n && n) { for (int i = 1; i <= n; i++)cin >> p[i].x >> p[i].y; get_ham(n); ans = 1e9; RC(top); cout << fixed << setprecision(4) << ans << endl; } return 0; }