• Smallest Bounding Rectangle(最小面积外接矩形)


    Given the Cartesian coordinates of n (> 0) 2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

    Input

    The input file may contain multiple test cases. Each test case begins with a line containing a positive integer n (< 1001) indicating the number of points in this test case. Then follows n lines each containing two real numbers giving respectively the x- and y-coordinates of a point. The input terminates with a test case containing a value 0 for n which must not be processed.  

    Output

    For each test case in the input print a line containing the area of the smallest bounding rectangle rounded to the 4th digit after the decimal point.

    Sample Input

    3
    -3.000 5.000
    7.000 9.000
    17.000 5.000
    4
    10.000 10.000
    10.000 20.000
    20.000 20.000
    20.000 10.000

    Sample Output

    80.0000
    100.0000

    #include<bits/stdc++.h>//最小面积外接矩形
    
    #define ll long long
    const int N = 50007;
    using namespace std;
    int n, top;
    double ans;
    #define eps 1e-8
    
    int dcmp(double x) { return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); }
    
    struct pt {
        double x, y;
    
        pt() {}
    
        pt(double x, double y) : x(x), y(y) {}
    
        friend bool operator<(const pt &A, const pt &B) {
            return A.x < B.x || (A.x == B.x && A.y < B.y);
        }
    } p[N], ham[N];
    
    pt operator-(const pt &A, const pt &B) { return pt(A.x - B.x, A.y - B.y); }
    
    double dot(const pt &A, const pt &B) { return A.x * B.x + A.y * B.y; }
    
    double cross(const pt &A, const pt &B) { return A.x * B.y - A.y * B.x; }
    
    double lenth(const pt &A) { return sqrt(dot(A, A)); }
    
    double node_to_line(pt C, pt A, pt B) {
        return fabs(cross(C - A, B - A)) / lenth(A - B);
    }
    
    bool cmp(const pt &A, const pt &B) {
        return dcmp(cross(A - p[1], B - p[1])) < 0 ||
               (dcmp(cross(A - p[1], B - p[1])) == 0 && dcmp(lenth(A - p[1]) - lenth(B - p[1])) < 0);
    }
    
    void get_ham(int n) {
        for (int i = 2; i <= n; i++)
            if (p[i] < p[1]) swap(p[i], p[1]);
        sort(p + 2, p + n + 1, cmp);
        top = 0;
        ham[top++] = p[1];
        for (int i = 2; i <= n; i++) {
            while (top >= 2 && dcmp(cross(p[i] - ham[top - 2], ham[top - 1] - ham[top - 2])) <= 0) top--;
            ham[top++] = p[i];
        }
    }
    
    void RC(int top) {
        ham[top] = ham[0];
        int j = 1, k = 1, l = 1;
        for (int i = 0; i < top; i++) {
            while (dcmp(cross(ham[j % top] - ham[i], ham[i + 1] - ham[i]) -
                        cross(ham[(j + 1) % top] - ham[i], ham[i + 1] - ham[i])) < 0)
                j++;
            k = max(k, i + 1);
            l = max(l, j);
            while (dcmp(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1]) -
                        dot(ham[(k + 1) % top] - ham[i + 1], ham[i] - ham[i + 1])) > 0)
                k++;
            while (dcmp(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i]) -
                        dot(ham[(l + 1) % top] - ham[i], ham[i + 1] - ham[i])) > 0)
                l++;
            double d = lenth(ham[i + 1] - ham[i]);
            double L = fabs(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1])) / d +
                       fabs(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i])) / d + d;
            double D = node_to_line(ham[j % top], ham[i], ham[i + 1]);
            ans = min(ans, L * D);
        }
        if (top < 3) ans = 0;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n && n) {
            for (int i = 1; i <= n; i++)cin >> p[i].x >> p[i].y;
            get_ham(n);
            ans = 1e9;
            RC(top);
            cout << fixed << setprecision(4) << ans << endl;
        }
        return 0;
    }
  • 相关阅读:
    uva10986 堆优化单源最短路径(pas)
    动态规划②——线性动态规划(背包)
    UVA567
    动态规划①——记忆化搜索
    网络号与主机号的区分与计算(转)
    故障处理-ORA-00376/ORA-01110
    Oracle的自动统计信息不收集直方图的信息
    Oracle 11g的Redo Log和Archive Log的分析方法
    SQL优化 1
    oracle 11g 通过在线重定义方式修改表结构
  • 原文地址:https://www.cnblogs.com/nublity/p/11755517.html
Copyright © 2020-2023  润新知