题意:给出一颗树,给树的每条边编号(0 - n-2),问使树上两点mex(u,v)最大值最小的编号策略。
解法:根据树的结构,可知找到节点度数大于等于3的点,确定0、1、2. 如果是一条直链则最大值为n-1编号任意。
#include<bits/stdc++.h> using namespace std; typedef long long ll ; #define int ll #define mod 998244353 #define gcd(m,n) __gcd(m, n) #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) int lcm(int a , int b){return a*b/gcd(a,b);} ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define all(v) v.begin(),v.end() #define size(v) (int)(v.size()) #define cin(x) scanf("%lld" , &x); const int N = 1e7+9; const int maxn = 1e5+9; const double esp = 1e-6; vector<int>a[maxn]; int vis[maxn]; void solve(){ int n ; cin >> n; rep(i , 1 , n-1){ int u , v ; cin >> u >> v ; a[u].pb(i); a[v].pb(i); } ME(vis , -1); int ans = -1 , ma = -1; for(int i = 1 ; i <= n ; i++){ if(size(a[i]) > 2){ ma = i ; break; } } if(ma != -1){ for(auto i : a[ma]){ vis[i] = ++ans; } } rep(i , 1 , n-1){ if(vis[i] == -1){ vis[i] = ++ans; } } rep(i , 1 , n-1){ cout << vis[i] << endl; } } signed main() { //ios::sync_with_stdio(false); int t ; //scanf("%lld" , &t); //while(t--) solve(); }