• 多项式乘法


    https://www.luogu.com.cn/problem/P3803

    题意:给出两个多项式,求两个多项式的卷积。

    1解法:FFT递归版,因为递归每次传数组导致慢。

    //#include <bits/stdc++.h>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <string.h>
    #include <vector>
    #define ME(x , y) memset(x , y , sizeof(x))
    #define SF(n) scanf("%d" , &n)
    #define rep(i , n) for(int i = 0 ; i < n ; i ++)
    #define INF  0x3f3f3f3f
    #define mod 20191117
    #define PI acos(-1)
    using namespace std;
    typedef long long ll ;
    const int MAXN = 2*1e6+10;
    const double pi =acos(-1.0);
    
    struct complex{
        double x , y ;
        complex(double xx = 0 , double yy = 0){
            x = xx , y = yy ;
        }
    }a[MAXN],b[MAXN];
    
    complex operator + (complex a , complex b)
    {
        return complex(a.x+b.x , a.y+b.y);
    }
    complex operator - (complex a , complex b)
    {
        return complex(a.x-b.x , a.y-b.y);
    }
    complex operator * (complex a , complex b)
    {
        return complex(a.x*b.x - a.y*b.y , a.x*b.y+a.y*b.x);
    }
    
    void fast_fast_tle(int limit , complex *a , int type)
    {
        if(limit == 1) return ;//只有一个常数项
        complex a1[limit>>1] , a2[limit>>1];
        for(int i = 0 ; i <= limit ; i+=2)
            a1[i>>1] = a[i] , a2[i>>1] = a[i+1];//下标分奇偶存入两数组
        fast_fast_tle(limit>>1 , a1 , type);//分治
        fast_fast_tle(limit>>1 , a2 , type);
        complex Wn = complex(cos(2.0*pi/limit) , type*sin(2.0*pi/limit)), w = complex(1 , 0);//单位根及幂
        for(int i = 0 ; i < (limit>>1) ; i++ , w = w * Wn)
        {
            a[i] = a1[i] + w*a2[i];
            a[i+(limit>>1)] = a1[i] - w*a2[i];//利用单位根的性质,得到另一部分
        }
    }
    
    int main()
    {
        int n , m;
        scanf("%d%d" , &n , &m);
        for(int i = 0 ; i <= n ; i++) scanf("%lf" , &a[i].x);
        for(int i = 0 ; i <= m ; i++) scanf("%lf" , &b[i].x);
        int limit = 1 ; while(limit <= n+m) limit <<= 1;
        fast_fast_tle(limit , a , 1);
        fast_fast_tle(limit , b , 1);
        //1表示从系数表示法变为点值表示
        for(int i = 0 ; i <= limit ; i++)
            a[i] = a[i] * b[i];//点值表示法的乘积O(n)
        fast_fast_tle(limit , a , -1);
        //傅里叶逆变换,-1表示点值表示法变为系数表示法
        for(int i = 0 ; i <= n+m ; i++) cout << (int)(a[i].x/limit+0.5) << " ";
    
        return 0;
    }
    

     2解法:FFT迭代版,因为我们需要求的序列实际是原序列下标的二进制反转!

    这样我们可以O(n)的利用某种操作得到我们要求的序列,然后不断向上合并就好了.

    //#include <bits/stdc++.h>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <string.h>
    #include <vector>
    #define ME(x , y) memset(x , y , sizeof(x))
    #define SF(n) scanf("%d" , &n)
    #define rep(i , n) for(int i = 0 ; i < n ; i ++)
    #define INF  0x3f3f3f3f
    #define mod 20191117
    #define PI acos(-1)
    using namespace std;
    typedef long long ll ;
    const int MAXN = 3e6+9;
    const double pi =acos(-1.0);
    int r[MAXN] , limit = 1 , l = 0;
    
    struct complex{
        double x , y ;
        complex(double xx = 0 , double yy = 0){
            x = xx , y = yy ;
        }
    }a[MAXN],b[MAXN];
    
    complex operator + (complex a , complex b)
    {
        return complex(a.x+b.x , a.y+b.y);
    }
    complex operator - (complex a , complex b)
    {
        return complex(a.x-b.x , a.y-b.y);
    }
    complex operator * (complex a , complex b)
    {
        return complex(a.x*b.x - a.y*b.y , a.x*b.y+a.y*b.x);
    }
    
    void fast_fast_tle(complex *a , int type)
    {
        for(int i = 0 ; i < limit ; i++)
            if(i < r[i]) swap(a[i] , a[r[i]]);//将序列下标变成迭代序列
        for(int mid = 1 ; mid < limit ; mid<<=1)//待合并的中点
        {
            complex Wn(cos(pi/mid) , type*sin(pi/mid));//单位根
            for(int R = mid<<1 , j = 0 ; j < limit ; j+=R)//R是区间右端点,j表示目前位置
            {
                complex w(1,0);
                for(int k = 0 ; k < mid ; k++ , w = w * Wn)//枚举左半部分
                {
                    complex x = a[j+k] , y = w * a[j+mid+k];//蝴蝶效应
                    a[j+k] = x + y ;
                    a[j+mid+k] = x - y ;
                }
            }
        }
    }
    
    int main()
    {
        int n , m ;
        scanf("%d%d" , &n , &m);
        for(int i = 0 ; i <= n ; i++) scanf("%lf" , &a[i].x);
        for(int i = 0 ; i <= m ; i++) scanf("%lf" , &b[i].x);
        while(limit <= n+m) limit <<= 1 , l++;
        for(int i = 0 ; i < limit ; i++)
        {
            r[i] = (r[i>>1]>>1) | ((i&1) << (l-1));//将标号二进制数反过来,存入r[i]数组中
        }
        fast_fast_tle(a , 1);
        fast_fast_tle(b , 1);
        for(int i = 0 ; i <= limit ; i++) a[i] = a[i]*b[i];
        fast_fast_tle(a , -1);
        for(int i = 0 ; i <= n+m ; i++)
            printf("%d " , (int)(a[i].x/limit + 0.5));
    
    
        return 0;
    }
    
  • 相关阅读:
    随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比
    stringstream读入每行数据
    java Log4j封装,程序任何位置调用
    Oracle 归档模式和非归档模式
    为什么需要 RPC 服务?
    JFrame windowbuiler的使用基础
    Eclipse安装windowsbuilder
    字符串反转
    static{}静态代码块与{}普通代码块之间的区别
    jQuery EasyUI 数据网格
  • 原文地址:https://www.cnblogs.com/nonames/p/12253363.html
Copyright © 2020-2023  润新知