• 编译原理实验(NFA转DFA,LL1文法)


    编译原理实验

    • 实验一:实现对 C/C++ 变量定义串的分析
    • 实验二:实现 NFA 转 DFA 并可视化
    • 实验三:实现对文法的 First,Follow集,预测分析表的求解,判别是否是LL1文法,以及对符号串的分析过程

    源代码地址

    实验一:实现对 C/C++ 变量定义串的分析

    1. 分析的串如下:
    string text1 = "int a = 1, b = 2; const  double x = 1.5; string s = "hello world"; char c = 'f';";
    string text2 = "int a = 1; intt b = 2;";
    string text3 = "const int t = 5, g;";
    string text4 = "int a = 1, b = 2";
    string text5 = "double a = 9; int a = 0.9";
    string text6 = "int 9s = 9;";
    
    2. 分析结果如下:

    image-20210512001844605

    实验二:实现 NFA 转 DFA 并可视化

    1. NFA 的存储:
    nfa_k = ['0', '1', '2', '3', '4'] #状态集
    nfa_t = ['a', 'b'] # 边
    nfa_f = [('0', 'a', '0'), ('0', 'a', '3'), # 图的信息
             ('0', 'b', '0'), ('0', 'b', '1'),
             ('1', 'b', '2'), ('2', 'a', '2'),
             ('2', 'b', '2'), ('3', 'a', '4'),
             ('4', 'a', '4'), ('4', 'b', '4')]
    nfa_s = ['0'] # 初态
    nfa_z = ['2', '4'] # 终态集
    
    2. ε_closure 和 move 操作:
    def ε_closure(S, f):
        res = []
        vis = {}
        q = Queue(maxsize = 0)
        for i in S:
            q.put(i)
            vis[i] = 1
        while q.empty() is False:
            node = q.get()
            if node not in res: res.append(node)
            for i in f:
                if i[0] == node and i[1] == 'ε' and i[2] not in vis:
                    q.put(i[2])
                    vis[i[2]] = 1
        res.sort()
        return res
    
    def move(S, f, a):
        res = []
        for i in S:
            for j in f:
                if j[0] == i and j[1] == a:
                    res.append(j[2])
        return res
    
    3. 可视化:
    • 工具:graphviz

    • 画图:

    def draw(K, f, S, Z, pic_name):
        dot = Digraph(name = pic_name, format = "png")
        for i in S:
            dot.node(name = i, label = i, color = 'green')
        for i in Z:
            dot.node(name = i, label = i, color = 'red')
        for i in K:
            if i not in S and i not in Z:
                dot.node(name = i, label = i)
        for i in f:
            dot.edge(i[0], i[2], label = i[1])
        dot.view(filename = pic_name, directory = "./picture")
    
    4. 效果:
    1. NFA图:

      image-20210512002942566

    2. DFA图:

      image-20210512003020795

    实验三:LL1文法的分析

    1. 数据的存储:
    non_term = set() # 非终结符集合
    term = set() # 终结符集合
    First = {} # First 集
    Follow = {} # Follow 集
    Gram = [] # 读入的文法
    production = {} #预处理过后的产生式 格式为:'S':{'a', 'EF'}
    AnalysisList = {} # 预测分析表
    start_sym = '' # 文法开始符号
    end_sym = '#' # 结束符号
    epsilon = 'ε' # 空符
    isLL1 = True
    
    2. 求解 First集:
    def getFirst() -> None:
        global non_term, term, First
        # 初始化非终结符的First集为空
        for it in non_term: First[it] = set()
        # 初始化终结符的First集合为自己
        for it in term: First[it] = set(it)
        flag = True
        while flag: # 当First集没有更新就结束
            flag = False
            for X in non_term:
                for Y in production[X]:
                    i = 0
                    mark = True
                    while mark and i < len(Y):
                        if not First[Y[i]] - set(epsilon) <= First[X]: # 还存在没有添加的
                            # print('First[' , X, '] = ', "   ", First[X], 'First[', Y[i] , '] = ' , First[Y[i]])
                            # First[Yi] 中没有 ε
                            if epsilon not in First[Y[i]] and Y[i] in non_term and i > 0:
                                First[X] |= First[Y[i]]
                                mark = False
                            else:
                                First[X] |= First[Y[i]] - set(epsilon)
                                flag = True
                        # Yi 不能推出 ε 就标记为 False
                        if epsilon not in First[Y[i]]: mark = False
                        i += 1
                    if mark: First[X] |= set(epsilon)
        return None
    
    3. 求解 Follow集:
    def getFollow() -> None:
        global non_term, term, First, Follow, start_sym
        for A in non_term: Follow[A] = set() # 初始化
        Follow[start_sym].add(end_sym) # 1. 将 # 号加入到Follow[s] 中
        flag = True
        while flag: # 当Follow集不再更新,算法结束
            flag = False
            for A in non_term:
                for B in production[A]:
                    for i in range(len(B)):
                        # bi 是终结符则跳过
                        if B[i] in term: continue
                        mark = True
                        for j in range(i + 1, len(B)):
                            if not First[B[j]] - set(epsilon) <= Follow[B[i]]: # 可以更新
                                Follow[B[i]] |= First[B[j]] - set(epsilon) # 对应书上的步骤 2
                                flag = True # 发生了改变
                            if epsilon not in First[B[j]]: mark = False
                            break
                        if mark: # A->αBβ and β->ε
                            if not Follow[A] <= Follow[B[i]]: # 可以更新
                                Follow[B[i]] |= Follow[A]
                                flag = True
        return None
    
    4. 构造预测分析表:
    # 计算 预测分析表|Select集,并判断是否是LL1文法
    def getAnalysisList() -> bool:
        # 初始化
        res = True
        for i in non_term:
            AnalysisList[i] = dict()
            for j in term:
                if j != epsilon: AnalysisList[i][j] = None
            AnalysisList[i][end_sym] = None
        for i in production:
            r = production[i]
            for s in r:
                mark = False
                for si in s:
                    if epsilon not in First[si]: # 不能推出空
                        for j in First[si]:
                            if AnalysisList[i][j] != None:
                                AnalysisList[i][j] += ', ->' + s
                                res = False
                            else: AnalysisList[i][j] = s
                        mark = False
                        break
                    else:
                        mark = True
                        for j in First[si] - set(epsilon):
                            if AnalysisList[i][j] != None:
                                res = False
                                AnalysisList[i][j] += ', ->' + s
                            else: AnalysisList[i][j] = s
                if mark: #First[s] 可以推出空
                    for j in Follow[i]:
                        if AnalysisList[i][j] != None:
                            res = False
                            AnalysisList[i][j] += ', ->' + s
                        else: AnalysisList[i][j] = s
                    
        return res
    
    5. 分析符号串:
    def analysis(s: str) -> PrettyTable():
        res = PrettyTable()
        res.field_names = ['步骤', '分析栈', '剩余输入串', '推导所用产生式或匹配']
        stk = ''
        stk += end_sym
        stk += start_sym
        step = 0
        while len(stk) and len(s):
            step += 1
            top = stk[len(stk) - 1]
            row = []
            row.append(step)
            row.append(stk)
            row.append(s)
            if top in term or top == end_sym: # 栈顶是终结符或 # 号
                if top == end_sym: # 结束:
                    row.append('接受')
                    res.add_row(row)
                    return res
                if top == s[0]: # 匹配成功
                    row.append('"' + s[0] + '"匹配')
                    res.add_row(row)
                    stk = stk.replace(stk[len(stk) - 1], '', 1)
                    s = s.replace(s[0], '', 1)
                    continue
                else: # 匹配失败
                    row.append('匹配失败')
                    res.add_row(row)
                    return res
            tmp_production = AnalysisList[top][s[0]] # 推导所用的产生式
            if tmp_production == None: #产生式为空
                row.append('推导失败')
                res.add_row(row)
                return res
            row.append(top + '->' + tmp_production)
            res.add_row(row)
            stk = stk.replace(stk[len(stk) - 1], '', 1)
            if tmp_production== epsilon: #推出了空字符则不push进栈中
                continue
            tmp_production = tmp_production[::-1]
            stk += tmp_production
            # print(row)
        step += 1
        row = []
        row.append(step)
        row.append(stk)
        row.append(s)
        row.append('失败')
        res.add_row(row)
        return res
    
    6. 分析LL1文法结果:

    image-20210512003747986

    image-20210512003826002

    7. 分析非LL1文法结果:

    image-20210512003928356

  • 相关阅读:
    程序员常见的坏习惯,你躺枪了吗?
    程序员常见的坏习惯,你躺枪了吗?
    程序员常见的坏习惯,你躺枪了吗?
    ACM2037
    [Golang]字符串拼接方式的性能分析
    如果一个类同时继承的两个类都定义了某一个函数会怎样呢 | Code4Fun
    Python学习笔记(四)函数式编程
    MySql之增删改查 · YbWork's Studio
    季銮西的博客
    ActiveMQ学习总结(一)
  • 原文地址:https://www.cnblogs.com/nonameless/p/14758145.html
Copyright © 2020-2023  润新知