• kaggle 泰坦尼克号问题总结


    学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了。

    1,看到样本是,查看样本的分布和统计情况

    #查看数据的统计信息
    print(data_train.info())
    #查看数据关于数值的统计信息
    print(data_train.describe())

    通常遇到缺值的情况,我们会有几种常见的处理方式

    • 如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了,或者考虑有值的是一类,没有值的是一类,
    • 如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征中
    • 如果缺值的样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个step(比如这里的age,我们可以考虑每隔2/3岁为一个步长),然后把它离散化,之后把NaN作为一个type加到属性类目中。
    • 有些情况下,缺失的值个数并不是特别多,那我们也可以试着根据已有的值,拟合一下数据,补充上。

    随机森林的方法用来填充数据

    from sklearn.ensemble import RandomForestRegressor
    
    ### 使用 RandomForestClassifier 填补缺失的年龄属性
    def set_missing_ages(df):
    
        # 把已有的数值型特征取出来丢进Random Forest Regressor中
        age_df = df[['Age','Fare', 'Parch', 'SibSp', 'Pclass']]
    
        # 乘客分成已知年龄和未知年龄两部分
        known_age = age_df[age_df.Age.notnull()].as_matrix()
        unknown_age = age_df[age_df.Age.isnull()].as_matrix()
    
        # y即目标年龄
        y = known_age[:, 0]
    
        # X即特征属性值
        X = known_age[:, 1:]
    
        # fit到RandomForestRegressor之中
        rfr = RandomForestRegressor(random_state=0, n_estimators=2000, n_jobs=-1)
        rfr.fit(X, y)
    
        # 用得到的模型进行未知年龄结果预测
        predictedAges = rfr.predict(unknown_age[:, 1::])
    
        # 用得到的预测结果填补原缺失数据
        df.loc[ (df.Age.isnull()), 'Age' ] = predictedAges 
    
        return df, rfr
    
    def set_Cabin_type(df):
        df.loc[ (df.Cabin.notnull()), 'Cabin' ] = "Yes"
        df.loc[ (df.Cabin.isnull()), 'Cabin' ] = "No"
        return df
    
    data_train, rfr = set_missing_ages(data_train)
    data_train = set_Cabin_type(data_train)

    2,接下来就是特征工程了,这一步比较复杂,就是选择特征,

    特征工程的处理方法包括很多种,可以在我的特征工程的博客中找到。

    随机森林特征选择方法:通过加入噪音值前后的错误率的差值来判断特征值的重要程度。

    import numpy as np  
    from sklearn.feature_selection import SelectKBest,f_classif  
    import matplotlib.pyplot as plt  
    predictors = ["Pclass","Sex","Age","SibSp","Parch","Fare","Embarked","FamilySize","Title","NameLength"]  
      
    #Perform feature selection  
    selector=SelectKBest(f_classif,k=5)  
    selector.fit(titanic[predictors],titanic["Survived"])  
      
    #Plot the raw p-values for each feature,and transform from p-values into scores  
    scores=-np.log10(selector.pvalues_)  
      
    #Plot the scores.   See how "Pclass","Sex","Title",and "Fare" are the best?  
    plt.bar(range(len(predictors)).scores)  
    plt.xticks(range(len(predictors)).predictors,rotation='vertical')  
    plt.show()  
      
    #Pick only the four best features.  
    predictors=["Pclass","Sex","Fare","Title"]  
      
    alg=RandomForestClassifier(random_state=1,n_estimators=50,min_samples_split=8,min_samples_leaf=4)  

    然后就是模型选择了,

    不能找到一个在所有数据上都表现好的模型,这就需要一步一步的验证了,而且同一个模型的不同参数,对结果影响也很大,在解决这个问题中我主要用了n折交叉验证来验证模型的准确率,选择准确率高的模型,然后通过曲线来模拟这些过程,还有一个可以考虑的点就是boosting方法,把许多个弱分类器的结果整合起来,还可以给每个弱分类器一定的权值。

    //集成多种算法求平均的方法来进行机器学习求解  
    from sklearn.ensemble import GradientBoostingClassifier  
    import numpy as  np  
      
    #The algorithms we want to ensemble.  
    #We're using the more linear predictors for the logistic regression,and everything with the gradient boosting classifier  
    algorithms=[  
        [GradientBoostingClassifier(random_state=1,n_estimators=25,max_depth=3, ["Pclass","Sex","Age","Fare","FamilySize","Title","Age","Embarked"]]  
        [LogisticRegression(random_state=1),["Pclass","Sex","Fare","FamilySize","Title","Age","Embarked"]]  
    ]  
      
    #Initialize the cross validation folds  
    kf=KFold(titanic.shape[0],n_folds=3,random_state=1)  
      
    predictions=[]  
    for train,test in kf:  
        train_target=titanic["Survived"].iloc[train]  
        full_test_predictions=[]  
        #Make predictions for each algorithm on each fold  
        for alg,predictors in algorithms:  
            #Fit the algorithm on the training data  
            alg.fit(titanic[predictors].iloc[train,:],train_targegt)  
            #Select and predict on the test fold  
            #The .astype(float) is necessary to convert the dataframe to all floats and sklearn error.  
            test_predictions=alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]  
        #Use a simple ensembling scheme -- just  average the predictions to get the final classification.  
        test_predictions=(full_test_predictions[0]+full_test_predictions[1])/2  
        #Any value over .5 is assumed to be a 1 prediction,and below .5 is a 0 prediction.  
        test_predictions[test_predictions<=0.5]=0  
        test_predictions[test_predictions>0.5]=1  
        predictions.append(test_predictions)  
      
    #Put all the predictions together into one array.  
    predictions=np.concatenate(predictions,axis=0)  
      
    #Compute accuracy by comparing to the training data  
    accuracy=sum(predictions[predictions==titanic["Survived"]])/len(predictions)  
    print(accuracy)  
    
    
    
    #The gradient boosting classifier generates better predictions,so we weight it higher  
    predictions=(full_predictions[0]*3+full_predictions[1]*1)/4  
    predictions  

    这个问题参考了很多的博客或教材:

    这个问题的视频讲解 http://study.163.com/course/courseLearn.htm?courseId=1003551009&from=study&edusave=1#/learn/video?lessonId=1004052093&courseId=1003551009

    使用sklearn进行kaggle案例泰坦尼克Titanic船员获救预测

    数据科学工程师面试宝典系列之二---Python机器学习kaggle案例:泰坦尼克号船员获救预测

    kaggle之泰坦尼克的沉没

    机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾

    经典又兼具备趣味性的Kaggle案例泰坦尼克号问题

    kaggle实战之Titanic (1)-预处理 

    kaggle实战之Titanic(2)-分类器的选择与实现

    kaggle入门泰坦尼克之灾内容总结

    我的代码已经上传至   github

  • 相关阅读:
    curl -L 跟随跳转
    Http报头Accept与Content-Type的区别
    curl 发送json请求
    IntelliJ 中类似于Eclipse ctrl+o的是ctrl+F12
    Spring AOP
    Windows下Nginx配置SSL实现Https访问(包含证书生成)
    @Retention n. 保留
    Exchanger使用
    Semaphore使用
    UVA12493
  • 原文地址:https://www.cnblogs.com/nolonely/p/6955696.html
Copyright © 2020-2023  润新知