将(x_1,x_2,x_3...x_n)写出来可以发现通项为(a^{i-1}*x_1+b*sumlimits_{j=0}^{i-2}a^j=a^{i-1}*x_1+b*frac{1-a^{i-1}}{1-a}=(x_1-frac{b}{1-a})a^{i-1}+frac{b}{1-a})
所求变为求一个(i)满足:
(tequiv (x_1-frac{b}{1-a})a^{i-1}+frac{b}{1-a}pmod{p})
(a^{i-1}equiv frac{t-(frac{b}{1-a})}{x_1-frac{b}{1-a}}pmod{p})
上BSGS即可,注意特判(a=0/1)。
(a=0):对于任意(i,x_i=b)
(a=1):(x_i=x_1+(i-1)*b)
解下对应的方程即可。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int T;
ll a,b,x1,mod,goal;
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline ll inv(ll x,ll mod){return power(x,mod-2,mod);}
inline ll BSGS(ll a,ll b,ll mod)
{
if(b==1)return 0;
unordered_map<ll,int>mp;mp.clear();
a%=mod,b%=mod;
ll t=ceil(sqrt(mod));
ll now=1;
for(int i=0;i<=t;i++)mp[b*now%mod]=i,now=now*a%mod;
a=power(a,t,mod);
if(!a)return !b?1:-1;
now=a;
for(int i=1;i<=t;i++)
{
if(mp.count(now))return i*t-mp[now];
now=now*a%mod;
}
return -1;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld%lld",&mod,&a,&b,&x1,&goal);
if(x1==goal){puts("1");continue;}
if(!a){puts(b==goal?"2":"-1");continue;}
if(a==1)
{
goal=((goal-x1)%mod+mod)%mod;
ll d=__gcd(b,mod);
if(goal%d){puts("-1");continue;}
ll res=(goal*inv(b,mod)+1)%mod;
if(!res)res=mod;
printf("%lld
",res);
continue;
}
ll res=BSGS(a,((goal-b*inv(1-a,mod)%mod)%mod+mod)%mod*inv(((x1-b*inv(1-a,mod)%mod)%mod+mod)%mod,mod)%mod,mod);
printf("%lld
",res==-1?res:res+1);
}
return 0;
}