• 快速排序及优化(Java实现)


    一. 普通快速排序

    找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base。再分为两个子数组的排序。如此递归下去。

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1);
        }
    
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
            if (left >= right) return;
            int p = partition(arr, left, right);
            sort(arr, left, p - 1);
            sort(arr, p + 1, right);
        }
    
        private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
            T base = arr[left];
            int j = left;
            for (int i = left + 1; i <= right; i++) {
                if (base.compareTo(arr[i]) > 0) {
                    j++;
                    swap(arr, j, i);
                }
            }
            swap(arr, left, j);
            return j;//返回一躺排序后基准值的下角标
        }
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

    二. 快速排序优化:随机选取基准值base

    在数组几乎有序时,快排性能不好(因为每趟排序后,左右两个子递归规模相差悬殊,大的那部分最后很可能会达到O(n^2))。

    解决:基准值随机地选取,而不是每次都取第一个数。这样就不会受“几乎有序的数组”的干扰了。但是对“几乎乱序的数组”的排序性能可能会稍微下降,至少多了排序前交换的那部分,乱序时这个交换没有意义...有很多“运气”成分..

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1);
        }
    
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
            if (left >= right) return;
            int p = partition(arr, left, right);
            sort(arr, left, p - 1);
            sort(arr, p + 1, right);
        }
    
        private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
            //排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
            //就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
            swap(arr,left,(int)(Math.random()*(right - left + 1)+left));
    
            T base = arr[left];
            int j = left;
            for (int i = left + 1; i <= right; i++) {
                if (base.compareTo(arr[i]) > 0) {
                    j++;
                    swap(arr, j, i);
                }
            }
            swap(arr, left, j);
            return j;//返回一躺排序后,基准值的下角标
        }
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

    三. 快速排序继续优化:配合着使用插入排序

    快排是不断减小问题规模来解决子问题的,需要不断递归。但是递归到规模足够小时,如果继续采用这种 不稳定+递归 的方式执行下去,效率不见得会很好。

    所以当问题规模较小时,近乎有序时,插入排序表现的很好。Java自带的Arrays.sort()里经常能看到这样的注释:“Use insertion sort on tiny arrays”,“Insertion sort on smallest arrays

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1, 16);
        }
    
        /**
         * @param arr   待排序的数组
         * @param left  左闭
         * @param right 右闭
         * @param k     当快排递归到子问题的规模 <= k 时,采用插入排序优化
         * @param <T>   泛型,待排序可比较类型
         */
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
            // 规模小时采用插入排序
            if (right - left <= k) {
                insertionSort(arr, left, right);
                return;
            }
            int p = partition(arr, left, right);
            sort(arr, left, p - 1, k);
            sort(arr, p + 1, right, k);
        }
    
        public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
            for (int i = l + 1; i <= r; i++) {
                T cur = arr[i];
                int j = i - 1;
                for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
                    arr[j + 1] = arr[j];
                }
                arr[j + 1] = cur;
            }
        }
    
        private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
            //排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
            //就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
            swap(arr, left, (int) (Math.random() * (right - left + 1) + left));
    
            T base = arr[left];
            int j = left;
            for (int i = left + 1; i <= right; i++) {
                if (base.compareTo(arr[i]) > 0) {
                    j++;
                    swap(arr, j, i);
                }
            }
            swap(arr, left, j);
            return j;//返回一躺排序后,基准值的下角标
        }
    
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

    四. 快速排序继续优化:两路快排

    在最开始的普通快速排序说过,让基准值base左边的都比base小,而base右边的都大于等于base。等于base的这些会聚集到右侧(或者稍微改改大小关系就会聚集到左侧)。总之就会聚集到一边。这样在数组中重复数字很多的时候,就又会导致两边子递归规模差距悬殊的情况。这时想把等于base的那些数分派到base两边,而不是让他们聚集到一起。

    (注:测试代码的时候,最好把插入排序那部分注视掉,向我下面代码中那样...不然数据量小于k=16的时候执行的是插入排序.....)

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1, 16);
        }
    
        /**
         * @param arr   待排序的数组
         * @param left  左闭
         * @param right 右闭
         * @param k     当快排递归到子问题的规模 <= k 时,采用插入排序优化
         * @param <T>   泛型,待排序可比较类型
         */
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
            // 规模小时采用插入排序
    //        if (right - left <= k) {
    //            insertionSort(arr, left, right);
    //            return;
    //        }
    
            if (left >= right) return;
    
            int p = partition(arr, left, right);
            sort(arr, left, p - 1, k);
            sort(arr, p + 1, right, k);
        }
    
        public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
            for (int i = l + 1; i <= r; i++) {
                T cur = arr[i];
                int j = i - 1;
                for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
                    arr[j + 1] = arr[j];
                }
                arr[j + 1] = cur;
            }
        }
    
        private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
            //排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
            //就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
            swap(arr, left, (int) (Math.random() * (right - left + 1) + left));
    
            T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序
    
            int i = left + 1; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。
    
            int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。
    
            while (true) {
                //从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
                while (i <= right && arr[i].compareTo(base) < 0) i++;
    
                //从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
                while (j >= left && arr[j].compareTo(base) > 0) j--;
    
                if (i > j) {//虽说是i>j,但其实都是以j=i-1为条件结束的
                    break;
                }
                swap(arr, i++, j--);
            }
    
            swap(arr, left, j);
            return j;//返回一躺排序后,基准值的下角标
        }
    
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

    五. 快速排序继续优化:两路快排 不用swap, 用直接赋值

    上面的两路在找到大于base的值和小于base的值时,用的是swap()方法来进行交换。两数交换涉及到第三个变量temp的操作,多了读写操作。接下来用直接赋值的方法,把小于的放到右边,大于的放到左边,当i和j相遇时,那个位置就是base该放的地方。至此一趟完成。递归即可。

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1, 16);
        }
    
        /**
         * @param arr   待排序的数组
         * @param left  左闭
         * @param right 右闭
         * @param k     当快排递归到子问题的规模 <= k 时,采用插入排序优化
         * @param <T>   泛型,待排序可比较类型
         */
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
            // 规模小时采用插入排序
    //        if (right - left <= k) {
    //            insertionSort(arr, left, right);
    //            return;
    //        }
    
            if (left >= right) return;
    
            int p = partition(arr, left, right);
            sort(arr, left, p - 1, k);
            sort(arr, p + 1, right, k);
        }
    
        public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
            for (int i = l + 1; i <= r; i++) {
                T cur = arr[i];
                int j = i - 1;
                for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
                    arr[j + 1] = arr[j];
                }
                arr[j + 1] = cur;
            }
        }
    
        private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
            //排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
            //就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
            swap(arr, left, (int) (Math.random() * (right - left + 1) + left));
    
            T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序
    
            int i = left; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。
    
            int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。
    
            while (i < j) {
                //从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
                while (j > i && arr[j].compareTo(base) > 0) j--;
    
                arr[i] = arr[j];
    
                //从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
                while (i < j && arr[i].compareTo(base) < 0) i++;
    
                arr[j] = arr[i];
    
            }
    
            arr[j] = base;
            return j;//返回一躺排序后,基准值的下角标
        }
    
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
    
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

    六. 快速排序继续优化:当大量数据,且重复数多时,用三路快排

    把数组分为三路,第一路都比base小,第二路都等于base,第三路都大于base。

    用指针从前到后扫描,如果:

    1.cur指向的数小于base,那么:交换arr[cur]和arr[i]的值,然后i++,cur++。

    2.cur指向的数等于base,  那么:cur++

    3.cur指向的数大于base,那么:交换arr[cur]和arr[j]的值,然后j--。

     

    当cur > j的时候说明三路都已经完成。

    public class QuickSort {
    
        public static <T extends Comparable<? super T>> void sort(T[] arr) {
            sort(arr, 0, arr.length - 1, 16);
        }
    
        /**
         * @param arr   待排序的数组
         * @param left  左闭
         * @param right 右闭
         * @param k     当快排递归到子问题的规模 <= k 时,采用插入排序优化
         * @param <T>   泛型,待排序可比较类型
         */
        public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
            // 规模小时采用插入排序
    //        if (right - left <= k) {
    //            insertionSort(arr, left, right);
    //            return;
    //        }
    
            if (left >= right) return;
            int[] ret = partition(arr, left, right);
            sort(arr, left, ret[0], k);
            sort(arr, ret[1], right, k);
        }
    
        public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
            for (int i = l + 1; i <= r; i++) {
                T cur = arr[i];
                int j = i - 1;
                for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
                    arr[j + 1] = arr[j];
                }
                arr[j + 1] = cur;
            }
        }
    
        /**
         * @param arr   待排序的数组
         * @param left  待排序数组的左边界
         * @param right 待排序数组的右边界
         * @param <T>   泛型
         * @return
         */
        private static <T extends Comparable<? super T>> int[] partition(T[] arr, int left, int right) {
            //排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
            //就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
            swap(arr, left, (int) (Math.random() * (right - left + 1) + left));
    
            T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序
    
            //三路快排分为下面这三个路(区间)
            int i = left; // left表示,[lleft...left) 左闭右开区间里的数都比base小
            int j = right;// left表示,(rright...right] 左开右闭区间里的数都比base大
            int cur = i;//用cur来遍历数组。[left...cur)左闭右开区间里的数都等于base
    
            while (cur <= j) {
                if (arr[cur].compareTo(base) == 0) {
                    cur++;
                } else if (arr[cur].compareTo(base) < 0) {
                    swap(arr, cur++, i++);
                } else {
                    swap(arr, cur, j--);
                }
            }
            return new int[]{i - 1, j + 1};//[i...j]都等于base,子问题就只需要解决i左边和j右边就行了
        }
    
    
        public static void swap(Object[] arr, int i, int j) {
            if (i != j) {
                Object temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        private static void printArr(Object[] arr) {
            for (Object o : arr) {
                System.out.print(o);
                System.out.print("\t");
            }
            System.out.println();
        }
    
        public static void main(String args[]) {
            Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
            printArr(arr);//3   5   1   7   2   9   8   0   4   6
            sort(arr);
    
            printArr(arr);//0   1   2   3   4   5   6   7   8   9
        }
    }
    

      

      

    ---------------------------------------------------------
    学如不及,犹恐失之
  • 相关阅读:
    JavaWeb项目自动部署,持续集成
    hbase系列
    传输视频的带宽如何计算?传输4K视频需要多少带宽?
    TSINGSEE青犀视频通过Webrtc编译android版本找不到gzip模块如何处理?
    TSINGSEE青犀视频webrtc相关内容编译如何在c++端编码出H264?
    视频组网/网络穿透工具EasyNTS如何永久删除其中某个设备?
    音视频流媒体平台的开发,开源EasyDarwin为什么如此受欢迎?
    基于音视频的云会议为什么会迎来发展的大爆发?
    EasyRTC的Web开发过程中如何创建新的空分支?
    C# 会话,进程,线程,线程安全
  • 原文地址:https://www.cnblogs.com/noKing/p/7922397.html
Copyright © 2020-2023  润新知