• nltk中的三元词组,二元词组


    在做英文文本处理时,常常会遇到这样的情况,需要我们提取出里面的词组进行主题抽取,尤其是具有行业特色的,比如金融年报等。其中主要进行的是进行双连词和三连词的抽取,那如何进行双连词和三连词的抽取呢?这是本文将要介绍的具体内容。

    1. nltk.bigrams(tokens) 和 nltk.trigrams(tokens)

    一般如果只是要求穷举双连词或三连词,则可以直接用nltk中的函数bigrams()或trigrams(), 效果如下面代码:

     1 >>> import nltk
     2 >>> str='you are my sunshine, and all of things are so beautiful just for you.'
     3 >>> tokens=nltk.wordpunct_tokenize(str)
     4 >>> bigram=nltk.bigrams(tokens)
     5 >>> bigram
     6 <generator object bigrams at 0x025C1C10>
     7 >>> list(bigram)
     8 [('you', 'are'), ('are', 'my'), ('my', 'sunshine'), ('sunshine', ','), (',', 'and'), ('and', 'all'), ('all', 'of'), ('of', 'things'), ('things', 'are'), ('are', 'so'), ('so', 'beautiful'), ('beautiful
     9 ', 'just'), ('just', 'for'), ('for', 'you'), ('you', '.')]
    10 >>> trigram=nltk.trigrams(tokens)
    11 >>> list(trigram)
    12 [('you', 'are', 'my'), ('are', 'my', 'sunshine'), ('my', 'sunshine', ','), ('sunshine', ',', 'and'), (',', 'and', 'all'), ('and', 'all', 'of'), ('all', 'of', 'things'), ('of', 'things', 'are'), ('thin
    13 gs', 'are', 'so'), ('are', 'so', 'beautiful'), ('so', 'beautiful', 'just'), ('beautiful', 'just', 'for'), ('just', 'for', 'you'), ('for', 'you', '.')]
    View Code

    2. nltk.ngrams(tokens, n)

    如果要求穷举四连词甚至更长的多词组,则可以用统一的函数ngrams(tokens, n),其中n表示n词词组, 该函数表达形式较统一,效果如下代码:

     1 >>> nltk.ngrams(tokens, 2)
     2 <generator object ngrams at 0x027AAF30>
     3 >>> list(nltk.ngrams(tokens,2))
     4 [('you', 'are'), ('are', 'my'), ('my', 'sunshine'), ('sunshine', ','), (',', 'and'), ('and', 'all'), ('all', 'of'), ('of', 'things'), ('things', 'are'), ('are', 'so'), ('so', 'beautiful'), ('beautiful
     5 ', 'just'), ('just', 'for'), ('for', 'you'), ('you', '.')]
     6 >>> list(nltk.ngrams(tokens,3))
     7 [('you', 'are', 'my'), ('are', 'my', 'sunshine'), ('my', 'sunshine', ','), ('sunshine', ',', 'and'), (',', 'and', 'all'), ('and', 'all', 'of'), ('all', 'of', 'things'), ('of', 'things', 'are'), ('thin
     8 gs', 'are', 'so'), ('are', 'so', 'beautiful'), ('so', 'beautiful', 'just'), ('beautiful', 'just', 'for'), ('just', 'for', 'you'), ('for', 'you', '.')]
     9 >>> list(nltk.ngrams(tokens,4))
    10 [('you', 'are', 'my', 'sunshine'), ('are', 'my', 'sunshine', ','), ('my', 'sunshine', ',', 'and'), ('sunshine', ',', 'and', 'all'), (',', 'and', 'all', 'of'), ('and', 'all', 'of', 'things'), ('all', '
    11 of', 'things', 'are'), ('of', 'things', 'are', 'so'), ('things', 'are', 'so', 'beautiful'), ('are', 'so', 'beautiful', 'just'), ('so', 'beautiful', 'just', 'for'), ('beautiful', 'just', 'for', 'you'),
    12  ('just', 'for', 'you', '.')]
    View Code

    3. nltk.collocations下的相关类

    nltk.collocations下有三个类:BigramCollocationFinder, QuadgramCollocationFinder, TrigramCollocationFinder

    1)BigramCollocationFinder

    它是一个发现二元词组并对其进行排序的工具,一般使用函数from_words()去构建一个搜索器,而不是直接生成一个实例。发现器主要调用以下方法:

    above_score(self, score_fn, min_score): 返回分数超过min_score的n元词组,并按分数从大到小对其进行排序。这里当然返回的是二元词组,这里的分数有多种定义,后面将做详细介绍。

    apply_freq_filter(self, min_freq):过滤掉词组出现频率小于min_freq的词组。

    apply_ngram_filter(self, fn): 过滤掉符合条件fn的词组。在判断条件fn时,是将整个词组进行判断是否满足条件fn,如果满足条件,则将该词组过滤掉。

    apply_word_filter(self, fn): 过滤掉符合条件fn的词组。在判断条件fn时,是将词组中的词一一判断,如果有一个词满足条件fn,则该词组满足条件,将会被过滤掉。

    nbest(self, score_fn, n): 返回分数最高的前n个词组。

    score_ngrams(self, score_fn): 返回由词组和对应分数组成的序列,并将其从高到低排列。

     1 >>> finder=nltk.collocations.BigramCollocationFinder.from_words(tokens)
     2 >>> bigram_measures=nltk.collocations.BigramAssocMeasures()
     3 >>> finder.nbest(bigram_measures.pmi, 10)
     4 [(',', 'and'), ('all', 'of'), ('and', 'all'), ('beautiful', 'just'), ('just', 'for'), ('my', 'sunshine'), ('of', 'things'), ('so', 'beautiful'), ('sunshine', ','), ('are', 'my')]
     5 >>> finder.nbest(bigram_measures.pmi, 100)
     6 [(',', 'and'), ('all', 'of'), ('and', 'all'), ('beautiful', 'just'), ('just', 'for'), ('my', 'sunshine'), ('of', 'things'), ('so', 'beautiful'), ('sunshine', ','), ('are', 'my'), ('are', 'so'), ('for'
     7 , 'you'), ('things', 'are'), ('you', '.'), ('you', 'are')]
     8 >>> finder.apply_ngram_filter(lambda w1,w2: w1 in [',', '.'] and w2 in [',', '.'] )
     9 >>> finder.nbest(bigram_measures.pmi, 100)
    10 [(',', 'and'), ('all', 'of'), ('and', 'all'), ('beautiful', 'just'), ('just', 'for'), ('my', 'sunshine'), ('of', 'things'), ('so', 'beautiful'), ('sunshine', ','), ('are', 'my'), ('are', 'so'), ('for'
    11 , 'you'), ('things', 'are'), ('you', '.'), ('you', 'are')]
    12 >>> finder.apply_word_filter(lambda x: x in [',', '.'])
    13 >>> finder.nbest(bigram_measures.pmi, 100)
    14 [('all', 'of'), ('and', 'all'), ('beautiful', 'just'), ('just', 'for'), ('my', 'sunshine'), ('of', 'things'), ('so', 'beautiful'), ('are', 'my'), ('are', 'so'), ('for', 'you'), ('things', 'are'), ('yo
    15 u', 'are')]
    View Code

    2)TrigramCollocationFinder 和 QuadgramCollocationFinder

    用法同BigramCollocationFinder, 只不过这里生产的是三元词组搜索器, 而QuadgramCollocationFinder产生的是四元词组搜索器。对应函数也同上。

    4. 计算词组词频

    >>> sorted(finder.ngram_fd.items(), key=lambda t: (-t[1], t[0]))[:10]
    [(('all', 'of'), 1), (('and', 'all'), 1), (('are', 'my'), 1), (('are', 'so'), 1), (('beautiful', 'just'), 1), (('for', 'you'), 1), (('just', 'for'), 1), (('my', 'sunshine'), 1), (('of', 'things'), 1),
     (('so', 'beautiful'), 1)]

    ###这里的key是排序依据,就是说先按t[1](词频)排序,-表示从大到小;再按照词组(t[0])排序,默认从a-z.

    5. 判断的分数

    在nltk.collocations.ngramAssocMeasures下,有多种分数:

    chi_sq(cls, n_ii, n_ix_xi_tuple, n_xx): 使用卡方分布计算出的各个n元词组的分数。

    pmi(cls, *marginals): 使用点互信息计算出的各个n元词组的分数。

    likelihood_ratio(cls, *marginals): 使用最大似然比计算出的各个n元词组的分数。

    student_t(cls, *marginals): 使用针对单元词组的带有独立假设的学生t检验计算各个n元词组的分数

    以上是比较常用的几种分数,当然还有很多其他的分数,比如:poisson_stirling, jaccard, fisher, phi_sq等。

     1 >>> bigram_measures=nltk.collocations.BigramAssocMeasures()
     2 >>> bigram_measures.student_t(8, (15828, 4675), 14307668)
     3 0.9999319894802036
     4 >>> bigram_measures.student_t(8, (42, 20), 14307668)
     5 2.828406367705413
     6 >>> bigram_measures.chi_sq(8, (15828, 4675), 14307668)
     7 1.5488692067282201
     8 >>> bigram_measures.chi_sq(59, (67, 65), 571007)
     9 456399.76190356724
    10 >>> bigram_measures.likelihood_ratio(110, (2552, 221), 31777)
    11 270.721876936225
    12 >>> bigram_measures.pmi(110, (2552, 221), 31777)
    13 2.6317398492166078
    14 >>> bigram_measures.pmi
    15 <bound method type.pmi of <class 'nltk.metrics.association.BigramAssocMeasures'>>
    16 >>> bigram_measures.likelihood_ratio
    17 <bound method type.likelihood_ratio of <class 'nltk.metrics.association.BigramAssocMeasures'>>
    18 >>> bigram_measures.chi_sq
    19 <bound method type.chi_sq of <class 'nltk.metrics.association.BigramAssocMeasures'>>
    20 >>> bigram_measures.student_t
    21 <bound method type.student_t of <class 'nltk.metrics.association.BigramAssocMeasures'>>

    6. Ranking and correlation

    It is useful to consider the results of finding collocations as a ranking, and the rankings output using different association measures can be compared using the Spearman correlation coefficient.

    Ranks can be assigned to a sorted list of results trivially by assigning strictly increasing ranks to each result:

    >>> from nltk.metrics.spearman import *
    >>> results_list = ['item1', 'item2', 'item3', 'item4', 'item5']
    >>> print(list(ranks_from_sequence(results_list)))
    [('item1', 0), ('item2', 1), ('item3', 2), ('item4', 3), ('item5', 4)]
    

    If scores are available for each result, we may allow sufficiently similar results (differing by no more than rank_gap) to be assigned the same rank:

    >>> results_scored = [('item1', 50.0), ('item2', 40.0), ('item3', 38.0),
    ...                   ('item4', 35.0), ('item5', 14.0)]
    >>> print(list(ranks_from_scores(results_scored, rank_gap=5)))
    [('item1', 0), ('item2', 1), ('item3', 1), ('item4', 1), ('item5', 4)]
    

    The Spearman correlation coefficient gives a number from -1.0 to 1.0 comparing two rankings. A coefficient of 1.0 indicates identical rankings; -1.0 indicates exact opposite rankings.

    >>> print('%0.1f' % spearman_correlation(
    ...         ranks_from_sequence(results_list),
    ...         ranks_from_sequence(results_list)))
    1.0
    >>> print('%0.1f' % spearman_correlation(
    ...         ranks_from_sequence(reversed(results_list)),
    ...         ranks_from_sequence(results_list)))
    -1.0
    >>> results_list2 = ['item2', 'item3', 'item1', 'item5', 'item4']
    >>> print('%0.1f' % spearman_correlation(
    ...        ranks_from_sequence(results_list),
    ...        ranks_from_sequence(results_list2)))
    0.6
    >>> print('%0.1f' % spearman_correlation(
    ...        ranks_from_sequence(reversed(results_list)),
    ...        ranks_from_sequence(results_list2)))
    -0.6
  • 相关阅读:
    mysql排行榜sql的实现
    MYSQL 简单的循环存储过程
    Git学习笔记
    LeetCode-树-简单-108-110-111
    Android开发连接mysql云数据库中遇到的的一些问题
    使用mybatis遇到报错Invalid bound statement (not found)
    ajax使用时碰到的一些坑
    关于Echarts的常见报错
    deepin系统桌面图标和菜单栏突然消失
    SOA架构理解
  • 原文地址:https://www.cnblogs.com/no-tears-girl/p/7096519.html
Copyright © 2020-2023  润新知