题目:
翻转一棵二叉树。
示例:
输入:
4
/
2 7
/ /
1 3 6 9
输出:
4
/
7 2
/ /
9 6 3 1
递归法:
其实就是交换一下左右节点,然后再递归的交换左节点,右节点
根据动画图我们可以总结出递归的两个条件如下:
终止条件:当前节点为 null 时返回
交换当前节点的左右节点,再递归的交换当前节点的左节点,递归的交换当前节点的右节点
时间复杂度:每个元素都必须访问一次,所以是 O(n)
空间复杂度:最坏的情况下,需要存放 O(h) 个函数调用(h是树的高度),所以是 O(h)
代码:
class Solution {
public TreeNode invertTree(TreeNode root) {
//递归函数的终止条件,节点为空时返回
if(root==null) {
return null;
}
//下面三句是将当前节点的左右子树交换
TreeNode tmp = root.right;
root.right = root.left;
root.left = tmp;
//递归交换当前节点的 左子树
invertTree(root.left);
//递归交换当前节点的 右子树
invertTree(root.right);
//函数返回时就表示当前这个节点,以及它的左右子树
//都已经交换完了
return root;
}
}
迭代法:
递归实现也就是深度优先遍历的方式,那么对应的就是广度优先遍历。
广度优先遍历需要额外的数据结构–队列,来存放临时遍历到的元素。
深度优先遍历的特点是一竿子插到底,不行了再退回来继续;而广度优先遍历的特点是层层扫荡。
所以,我们需要先将根节点放入到队列中,然后不断的迭代队列中的元素。
对当前元素调换其左右子树的位置,然后:
判断其左子树是否为空,不为空就放入队列中
判断其右子树是否为空,不为空就放入队列中
代码:
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root==null) {
return null;
}
//将二叉树中的节点逐层放入队列中,再迭代处理队列中的元素
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
queue.add(root);
while(!queue.isEmpty()) {
//每次都从队列中拿一个节点,并交换这个节点的左右子树
TreeNode tmp = queue.poll();
TreeNode left = tmp.left;
tmp.left = tmp.right;
tmp.right = left;
//如果当前节点的左子树不为空,则放入队列等待后续处理
if(tmp.left!=null) {
queue.add(tmp.left);
}
//如果当前节点的右子树不为空,则放入队列等待后续处理
if(tmp.right!=null) {
queue.add(tmp.right);
}
}
//返回处理完的根节点
return root;
}
}