• hdu 5195 DZY Loves Topological Sorting BestCoder Round #35 1002 [ 拓扑排序 + 优先队列 || 线段树 ]


    传送门

    DZY Loves Topological Sorting

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 221    Accepted Submission(s): 52


    Problem Description
    A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (uv) from vertex u to vertex v , u comes before v in the ordering.
    Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k edges from the graph.
     
    Input
    The input consists several test cases. (TestCase5 )
    The first line, three integers n,m,k(1n,m105,0km) .
    Each of the next m lines has two integers: u,v(uv,1u,vn) , representing a direct edge(uv) .
     
    Output
    For each test case, output the lexicographically largest topological ordering.
     
    Sample Input
    5 5 2 1 2 4 5 2 4 3 4 2 3 3 2 0 1 2 1 3
     
    Sample Output
    5 3 1 2 4 1 3 2
    Hint
    Case 1. Erase the edge (2->3),(4->5). And the lexicographically largest topological ordering is (5,3,1,2,4).
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5197 5196 5193 5192 5189 
     
     
    http://bestcoder.hdu.edu.cn/
     
    Problem B - DZY Loves Topological Sorting
    因为我们要求最后的拓扑序列字典序最大,所以一定要贪心地将标号越大的点越早入队。我们定义点i的入度为di。假设当前还能删去k条边,那么我们一定会把当前还没入队的dik的最大的i找出来,把它的di条入边都删掉,然后加入拓扑序列。可以证明,这一定是最优的。
    具体实现可以用线段树维护每个位置的di,在线段树上二分可以找到当前还没入队的dik的最大的i。于是时间复杂度就是O((n+m)logn).


    不过,这里面说的还有一点不太清楚,
    转一下另一个题解:
    http://blog.csdn.net/glqac/article/details/44710897

    看题意以为是个拓扑排序。事实上,就是个线段树。因为最多可以删k条边, 所以就是在线段树里找入度小于等于k的最大值,那么保存个区间最小就ok了。如果右子树的区间最小小于等于k那么就往右边走,因为是要找字典序最大的。当k是0,也是这样找,就跟topological sort是一样的。然后删除一个点就在线段树那个点置最大值,再删除他的边。因为总共也就m条边不超过10^5。

    总复杂度o(n+m)logn。

    我的解法:

    用优先队列,当前节点的入度小于k便入队列,出队列时以节点编号为优先权,如果小于等于k,则输出,反之,跳过。不过写的时候遇到几个问题:

    1.节点重复入队列没事,但是,不能让已经在队列中的再入队列。故要用vis,vis=0暂时不在队列中,vis=-1,在队列中,vis=1,已经输出。

    2.判断队首元素的入度是否 小于k时,要用现在的入度,而不是入队列时的入度,因为,可能在处理其它点的时候,该点的入度已经发生了变化。

    总的来说,还是线段树的方法思路清晰~~

    13278084 2015-03-29 08:49:19 Accepted 5195 561MS 6988K 2158 B C++ czy
    13278083 2015-03-29 08:49:04 Time Limit Exceeded 5195 2000MS 8308K 2158 B G++ czy
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <stack>
      4 #include <vector>
      5 #include <map>
      6 #include <algorithm>
      7 #include <queue>
      8 
      9 #define ll long long
     10 int const N = 100005;
     11 int const M = 205;
     12 int const inf = 1000000000;
     13 ll const mod = 1000000007;
     14 
     15 using namespace std;
     16 
     17 int n,m;
     18 int k;
     19 int vis[N];
     20 vector<int> bian[N];
     21 int r[N];
     22 
     23 struct node
     24 {
     25     friend bool operator < (node n1,node n2)
     26     {
     27         return n1.index  < n2.index;
     28     }
     29     int index;
     30     int d;
     31 };
     32 
     33 void ini()
     34 {
     35     int u,v;
     36     memset(r,0,sizeof(r));
     37     memset(vis,0,sizeof(vis));
     38     int i;
     39     for(i=0;i<=n;i++){
     40         bian[i].clear();
     41     }
     42     for(i=1;i<=m;i++){
     43         scanf("%d%d",&u,&v);
     44         r[ v ]++;
     45         bian[ u ].push_back( v );
     46     }
     47 
     48 }
     49 
     50 void solve()
     51 {
     52     node te,nt;
     53     int i;
     54     priority_queue<node> que;
     55     for(i=n;i>=1;i--){
     56         if(r[ i ]<=k){
     57             te.index=i;
     58             te.d=r[i];
     59             que.push(te);
     60             vis[i]=-1;
     61         }
     62     }
     63 
     64     int ff=0;
     65     vector<int>::iterator it;
     66     while(que.size()>=1){
     67         te=que.top();
     68         que.pop();
     69        // printf(" 
    u=%d r=%d k=%d
    ",te.index,te.d,k);
     70         if(r[te.index]<=k){
     71             k-=r[te.index];
     72             vis[te.index]=1;
     73         }
     74         else{
     75             vis[te.index]=0;
     76             continue;
     77         }
     78         if(ff==0){
     79             ff=1;
     80             printf("%d",te.index);
     81         }
     82         else{
     83             printf(" %d",te.index);
     84         }
     85         for(it=bian[te.index].begin();it!=bian[te.index].end();it++)
     86         {
     87             int y=*it;
     88             r[y]--;
     89             if(r[y]<=k && vis[y]==0){
     90                 nt.index=y;
     91                 nt.d=r[y];
     92                 que.push(nt);
     93                 vis[y]=-1;
     94             }
     95         }
     96     }
     97     printf("
    ");
     98 }
     99 
    100 void out()
    101 {
    102 
    103 }
    104 
    105 int main()
    106 {
    107     //freopen("data.in","r",stdin);
    108     //freopen("data.out","w",stdout);
    109     //scanf("%d",&T);
    110     //for(int cnt=1;cnt<=T;cnt++)
    111     //while(T--)
    112     while(scanf("%d%d%d",&n,&m,&k)!=EOF)
    113     {
    114         ini();
    115         solve();
    116         out();
    117     }
    118 }
  • 相关阅读:
    天天生鲜(一) 表设计
    linux 分区管理
    linux rpm包管理 yum管理
    linux命令
    linux IP 网关配置
    Django的JWT机制工作流程
    django CBV模式源码执行过程
    django 网站上传资源的显示与配置
    图片服务器的架构演进
    php获取指定目录下的所有文件列表
  • 原文地址:https://www.cnblogs.com/njczy2010/p/4375234.html
Copyright © 2020-2023  润新知