• BestCoder Round #25 1002 Harry And Magic Box [dp]


    传送门

    Harry And Magic Box


    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 165    Accepted Submission(s): 64


    Problem Description
    One day, Harry got a magical box. The box is made of n*m grids. There are sparking jewel in some grids. But the top and bottom of the box is locked by amazing magic, so Harry can’t see the inside from the top or bottom. However, four sides of the box are transparent, so Harry can see the inside from the four sides. Seeing from the left of the box, Harry finds each row is shining(it means each row has at least one jewel). And seeing from the front of the box, each column is shining(it means each column has at least one jewel). Harry wants to know how many kinds of jewel’s distribution are there in the box.And the answer may be too large, you should output the answer mod 1000000007.
     
    Input
    There are several test cases.
    For each test case,there are two integers n and m indicating the size of the box. 0n,m50  .
     
    Output
    For each test case, just output one line that contains an integer indicating the answer.
     
    Sample Input
    1 1 2 2 2 3
     
    Sample Output
    1 7 25
    Hint
    There are 7 possible arrangements for the second test case. They are: 11 11 11 10 11 01 10 11 01 11 01 10 10 01 Assume that a grids is '1' when it contains a jewel otherwise not.

    官方题解:

    1002 Harry And Magic Box
    dp题,我们一行一行的考虑。dp[i][j],表示前i行,都满足了每一行至少有一个宝石的条件,而只有j列满足了有宝石的条件的情况有多少种。枚举第i+1行放的宝石数k,这k个当中有t个是放在没有宝石的列上的,那么我们可以得到转移方程:
    dp[i+1][j+t]+=dp[i][j]*c[m-j][t]*c[j][k-t],其中c[x][y],意为在x个不同元素中无序地选出y个元素的所有组合的个数。
      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdlib>
      4 #include<cstdio>
      5 #include<algorithm>
      6 #include<cmath>
      7 #include<queue>
      8 #include<map>
      9 #include<set>
     10 #include<string>
     11 
     12 #define N 55
     13 #define M 10
     14 #define mod 1000000007
     15 //#define p 10000007
     16 #define mod2 1000000000
     17 #define ll long long
     18 #define LL long long
     19 #define eps 1e-9
     20 #define maxi(a,b) (a)>(b)? (a) : (b)
     21 #define mini(a,b) (a)<(b)? (a) : (b)
     22 
     23 using namespace std;
     24 
     25 ll n,m;
     26 ll dp[N][N];
     27 ll ans;
     28 ll c[N][N];
     29 ll sum[N][N];
     30 
     31 void ini1()
     32 {
     33     memset(c,0,sizeof(c));
     34     memset(sum,0,sizeof(sum));
     35     int i,j;
     36     for(i=0;i<=N-5;i++){
     37         c[i][0]=c[i][i]=1;
     38     }
     39     for(i=2;i<=N-5;i++){
     40         for(j=1;j<i;j++){
     41             c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
     42         }
     43     }
     44     //for(i=1;i<=M-5;i++){
     45     //    for(j=0;j<=i;j++){
     46     //        printf(" i=%d j=%d c=%I64d
    ",i,j,c[i][j]);
     47     //    }
     48     //}
     49     for(i=1;i<=N-5;i++){
     50         sum[i][0]=1;
     51         for(j=1;j<=i;j++){
     52             sum[i][j]=(sum[i][j-1]+c[i][j])%mod;
     53         }
     54     }
     55 }
     56 
     57 void ini()
     58 {
     59     memset(dp,0,sizeof(dp));
     60     ans=0;
     61     dp[0][0]=1;
     62 }
     63 
     64 void solve()
     65 {
     66     int i,j,k,o;
     67     i=1;
     68     for(j=1;j<=m;j++){
     69         dp[i][j]=c[m][j];
     70     }
     71     for(i=2;i<=n;i++){
     72         for(j=1;j<=m;j++){
     73             dp[i][j]=( dp[i-1][j]*(sum[j][j]-1) )%mod;
     74             for(k=1;k<j;k++){
     75                 o=j-k;
     76                 dp[i][j]=(dp[i][j]+( ( dp[i-1][k]*(sum[k][k]) ) %mod ) * (c[m-k][o]) )%mod;
     77             }
     78         }
     79     }
     80 }
     81 
     82 void out()
     83 {
     84     //int i,j;
     85 
     86     //for(i=1;i<=n;i++){
     87     //    for(j=1;j<=m;j++){
     88      //       printf(" i=%d j=%d dp=%I64d
    ",i,j,dp[i][j]);
     89      //  }
     90    // }
     91     ans=(dp[n][m])%mod;
     92     printf("%I64d
    ",ans);
     93 }
     94 
     95 int main()
     96 {
     97     ini1();
     98    // freopen("data.in","r",stdin);
     99     //freopen("data.out","w",stdout);
    100     //scanf("%d",&T);
    101     //for(int ccnt=1;ccnt<=T;ccnt++)
    102    // while(T--)
    103     while(scanf("%I64d%I64d",&n,&m)!=EOF)
    104     {
    105         ini();
    106         solve();
    107         out();
    108     }
    109 
    110     return 0;
    111 }
  • 相关阅读:
    Linux 下安装nodejs
    Linux 下安装JDK
    ubuntu 把软件源修改为国内源
    vi/vim 命令使用详解
    不同浏览器css引入外部字体的方式
    npx 命令介绍
    ICloud没有密码怎么注销?
    装修后才知道的79件事
    天翼宽带政企网关B2-1P 如何获得超级管理员账号?
    家庭治疗偏头痛
  • 原文地址:https://www.cnblogs.com/njczy2010/p/4205551.html
Copyright © 2020-2023  润新知