• hdu 4961 数论 o(nlogn)


    Boring Sum

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 60    Accepted Submission(s): 30

    Problem Description
       Number theory is interesting, while this problem is boring.
       Here is the problem. Given an integer sequence a1, a2, …, an, let S(i) = {j|1<=j<i, and aj is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as af(i). Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define ci as ag(i). The boring sum of this sequence is defined as b1 * c1 + b2 * c2 + … + bn * cn.
       Given an integer sequence, your task is to calculate its boring sum.
     
    Input
       The input contains multiple test cases.
       Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a1, a2, …, an (1<= ai<=100000).
       The input is terminated by n = 0.
     
    Output
       Output the answer in a line.
     
    Sample Input
    5 1 4 2 3 9 0
     
    Sample Output
    136
    Hint
    In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  4970 4968 4967 4966 4965 
     
    题解:对于输入的数列,从前往后扫描一遍,对于每个数,都更新一下它的约数的左边最近倍数的值(b值);
    同样地,从后往前扫描一遍,对于每个数,都更新一下它的约数的右边最近倍数的值(c值)。最后直接求所有b*c的和即可。
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<cstdio>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<map>
     9 
    10 #define N 100005
    11 #define M 15
    12 #define mod 1000000007
    13 #define mod2 100000000
    14 #define ll long long
    15 #define maxi(a,b) (a)>(b)? (a) : (b)
    16 #define mini(a,b) (a)<(b)? (a) : (b)
    17 
    18 using namespace std;
    19 
    20 int n;
    21 ll a[N],b[N],c[N];
    22 int vis[N];
    23 ll ans;
    24 
    25 int main()
    26 {
    27     int i;
    28    // freopen("data.in","r",stdin);
    29     //scanf("%d",&T);
    30     //for(int cnt=1;cnt<=T;cnt++)
    31     //while(T--)
    32     while(scanf("%d",&n)!=EOF)
    33     {
    34         if(n==0) break;
    35         ans=0;
    36         memset(b,0,sizeof(b));
    37         memset(c,0,sizeof(c));
    38         memset(vis,0,sizeof(vis));
    39         for(i=1;i<=n;i++){
    40             scanf("%I64d",&a[i]);
    41         }
    42 
    43         vis[ a[1] ]=1;
    44         for(i=2;i<=n;i++){
    45             for(ll j=1;j*j<=a[i];j++){
    46                 if(a[i]%j!=0) continue;
    47                 if(vis[j]!=0){
    48                     b[ vis[j] ]=a[i];
    49                     vis[j]=0;
    50                 }
    51                 ll te=a[i]/j;
    52                 if(vis[te]!=0){
    53                     b[ vis[te] ]=a[i];
    54                     vis[te]=0;
    55                 }
    56             }
    57             vis[ a[i] ]=i;
    58         }
    59 
    60 
    61         for(i=1;i<=n;i++){
    62             if(b[i]==0) b[i]=a[i];
    63         }
    64 
    65         memset(vis,0,sizeof(vis));
    66         vis[ a[n] ]=n;
    67         for(i=n-1;i>=1;i--){
    68             for(ll j=1;j*j<=a[i];j++){
    69                 if(a[i]%j!=0) continue;
    70                 if(vis[j]!=0){
    71                     c[ vis[j] ]=a[i];
    72                     vis[j]=0;
    73                 }
    74                 ll te=a[i]/j;
    75                 if(vis[te]!=0){
    76                     c[ vis[te] ]=a[i];
    77                     vis[te]=0;
    78                 }
    79             }
    80             vis[ a[i] ]=i;
    81         }
    82 
    83         for(i=1;i<=n;i++){
    84             if(c[i]==0) c[i]=a[i];
    85         }
    86 
    87         for(i=1;i<=n;i++){
    88             ans+=b[i]*c[i];
    89         }
    90         printf("%I64d
    ",ans);
    91 
    92     }
    93 
    94     return 0;
    95 }
  • 相关阅读:
    POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
    POJ 3678 Katu Puzzle (2-SAT)
    超详细的Java面试题总结(一)之Java基础知识篇
    Java高级面试题及答案
    Java线程面试题 Top 50
    Java面试题收集
    Spring基础使用(一)--------IOC、Bean的XML方式装配
    你不知道的Javascript:有趣的setTimeout
    Java 10 的 10 个新特性,将彻底改变你写代码的方式!
    深入理解 Java 多线程核心知识:跳槽面试必备
  • 原文地址:https://www.cnblogs.com/njczy2010/p/3922806.html
Copyright © 2020-2023  润新知