• 关于自定义sparkSQL数据源(Hbase)操作中遇到的坑


    自定义sparkSQL数据源的过程中,需要对sparkSQL表的schema和Hbase表的schema进行整合;

    对于spark来说,要想自定义数据源,你可以实现这3个接口:

    BaseRelation 代表了一个抽象的数据源。该数据源由一行行有着已知schema的数据组成(关系表)。
    TableScan 用于扫描整张表,将数据返回成RDD[Row]。
    RelationProvider 顾名思义,根据用户提供的参数返回一个数据源(BaseRelation)。

    当然,TableScan其实是最粗粒度的查询,代表一次性扫描整张表,如果有需求,更细粒度在数据源处过滤掉数据,可以实现:

    PrunedScan:可以列剪枝

    PrunedFilteredScan:列剪枝 + 过滤

    所以,如果对接Hbase的话,就定义一个Hbase的relation

    class DefaultSource extends RelationProvider {
      def createRelation(sqlContext: SQLContext, parameters: Map[String, String]) = {
        HBaseRelation(parameters)(sqlContext)
      }
    }
    case class HBaseRelation(@transient val hbaseProps: Map[String,String])(@transient val sqlContext: SQLContext) extends BaseRelation with Serializable with TableScan{
    
      val hbaseTableName =  hbaseProps.getOrElse("hbase_table_name", sys.error("not valid schema"))
      val hbaseTableSchema =  hbaseProps.getOrElse("hbase_table_schema", sys.error("not valid schema"))
      val registerTableSchema = hbaseProps.getOrElse("sparksql_table_schema", sys.error("not valid schema"))
      val rowRange = hbaseProps.getOrElse("row_range", "->")
      //get star row and end row
      val range = rowRange.split("->",-1)
      val startRowKey = range(0).trim
      val endRowKey = range(1).trim
      val tempHBaseFields = extractHBaseSchema(hbaseTableSchema) //do not use this, a temp field
      val registerTableFields = extractRegisterSchema(registerTableSchema)
      val tempFieldRelation = tableSchemaFieldMapping(tempHBaseFields,registerTableFields)
      val hbaseTableFields = feedTypes(tempFieldRelation)
      val fieldsRelations =  tableSchemaFieldMapping(hbaseTableFields,registerTableFields)
      val queryColumns =  getQueryTargetCloumns(hbaseTableFields)
      def feedTypes( mapping: Map[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
        val hbaseFields = mapping.map{
          case (k,v) =>
            val field = k.copy(fieldType=v.fieldType)
            field
        }
        hbaseFields.toArray
      }
    
    
    
    
      def isRowKey(field: HBaseSchemaField) : Boolean = {
        val cfColArray = field.fieldName.split(":",-1)
        val cfName = cfColArray(0)
        val colName =  cfColArray(1)
        if(cfName=="" && colName=="key") true else false
      }
    
      
      def getQueryTargetCloumns(hbaseTableFields: Array[HBaseSchemaField]): String = {
        var str = ArrayBuffer[String]()
        hbaseTableFields.foreach{ field=>
          if(!isRowKey(field)) {
            str.append(field.fieldName)
          }
        }
        println(str.mkString(" "))
        str.mkString(" ")
      }
      lazy val schema = {
        val fields = hbaseTableFields.map{ field=>
          val name  = fieldsRelations.getOrElse(field, sys.error("table schema is not match the definition.")).fieldName
          val relatedType =  field.fieldType match  {
            case "String" =>
              SchemaType(StringType,nullable = false)
            case "Int" =>
              SchemaType(IntegerType,nullable = false)
            case "Long" =>
              SchemaType(LongType,nullable = false)
            case "Double" =>
              SchemaType(DoubleType,nullable = false)
    
          }
          StructField(name,relatedType.dataType,relatedType.nullable)
        }
        StructType(fields)
      }
      
    
      def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
        if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
        val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
        rs.toMap
      }
    
    
      /**
        * spark sql schema will be register
        *   registerTableSchema   '(rowkey string, value string, column_a string)'
        */
      def extractRegisterSchema(registerTableSchema: String) : Array[RegisteredSchemaField] = {
        val fieldsStr = registerTableSchema.trim.drop(1).dropRight(1)
        val fieldsArray = fieldsStr.split(",").map(_.trim)//sorted
        fieldsArray.map{ fildString =>
          val splitedField = fildString.split("\s+", -1)//sorted
          RegisteredSchemaField(splitedField(0), splitedField(1))
        }
      }
    
      
      def extractHBaseSchema(externalTableSchema: String) : Array[HBaseSchemaField] = {
        val fieldsStr = externalTableSchema.trim.drop(1).dropRight(1)
        val fieldsArray = fieldsStr.split(",").map(_.trim)
        fieldsArray.map(fildString => HBaseSchemaField(fildString,""))
      }
    
      // By making this a lazy val we keep the RDD around, amortizing the cost of locating splits.
      lazy val buildScan = {
    
        val hbaseConf = HBaseConfiguration.create()
        hbaseConf.set("hbase.zookeeper.quorum", GlobalConfigUtils.hbaseQuorem)
        hbaseConf.set(TableInputFormat.INPUT_TABLE, hbaseTableName)
        hbaseConf.set(TableInputFormat.SCAN_COLUMNS, queryColumns)
        hbaseConf.set(TableInputFormat.SCAN_ROW_START, startRowKey)
        hbaseConf.set(TableInputFormat.SCAN_ROW_STOP, endRowKey)
    
        val hbaseRdd = sqlContext.sparkContext.newAPIHadoopRDD(
          hbaseConf,
          classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat],
          classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
          classOf[org.apache.hadoop.hbase.client.Result]
        )
    
        val rs = hbaseRdd.map(tuple => tuple._2).map(result => {
          var values = new ArrayBuffer[Any]()
          hbaseTableFields.foreach{field=>
            values += Resolver.resolve(field,result)
          }
          Row.fromSeq(values.toSeq)
        })
        rs
      }
    
      private case class SchemaType(dataType: DataType, nullable: Boolean)
    }
    HBaseRelation

    Hbase的schema:

    package object hbase {
    
      abstract class SchemaField extends Serializable
    
      case class RegisteredSchemaField(fieldName: String, fieldType: String)  extends  SchemaField  with Serializable
    
      case class HBaseSchemaField(fieldName: String, fieldType: String)  extends  SchemaField  with Serializable
    
      case class Parameter(name: String)
      //sparksql_table_schema
      protected  val SPARK_SQL_TABLE_SCHEMA = Parameter("sparksql_table_schema")
      protected  val HBASE_TABLE_NAME = Parameter("hbase_table_name")
      protected  val HBASE_TABLE_SCHEMA = Parameter("hbase_table_schema")
      protected  val ROW_RANGE = Parameter("row_range")
    
      /**
        * Adds a method, `hbaseTable`, to SQLContext that allows reading data stored in hbase table.
        */
      implicit class HBaseContext(sqlContext: SQLContext) {
        def hbaseTable(sparksqlTableSchema: String, hbaseTableName: String, hbaseTableSchema: String, rowRange: String = "->") = {
          var params = new HashMap[String, String]
          params += ( SPARK_SQL_TABLE_SCHEMA.name -> sparksqlTableSchema)
          params += ( HBASE_TABLE_NAME.name -> hbaseTableName)
          params += ( HBASE_TABLE_SCHEMA.name -> hbaseTableSchema)
          //get star row and end row
          params += ( ROW_RANGE.name -> rowRange)
          sqlContext.baseRelationToDataFrame(HBaseRelation(params)(sqlContext))
        }
      }
    }
    View Code

    当然了,其中schema的数据类型也得处理下:

    object Resolver extends  Serializable {
      def resolve (hbaseField: HBaseSchemaField, result: Result ): Any = {
        val cfColArray = hbaseField.fieldName.split(":",-1)
        val cfName = cfColArray(0)
        val colName =  cfColArray(1)
        var fieldRs: Any = null
        //resolve row key otherwise resolve column
        if(cfName=="" && colName=="key") {
          fieldRs = resolveRowKey(result, hbaseField.fieldType)
        } else {
          fieldRs =  resolveColumn(result, cfName, colName,hbaseField.fieldType)
        }
        fieldRs
      }
    
      def resolveRowKey (result: Result, resultType: String): Any = {
        val rowkey = resultType match {
          case "String" =>
            result.getRow.map(_.toChar).mkString
          case "Int" =>
            result  .getRow.map(_.toChar).mkString.toInt
          case "Long" =>
            result.getRow.map(_.toChar).mkString.toLong
          case "Float" =>
            result.getRow.map(_.toChar).mkString.toLong
          case "Double" =>
            result.getRow.map(_.toChar).mkString.toDouble
        }
        rowkey
      }
    
      def resolveColumn (result: Result, columnFamily: String, columnName: String, resultType: String): Any = {
    
        val column = result.containsColumn(columnFamily.getBytes, columnName.getBytes) match{
          case true =>{
            resultType match {
              case "String" =>
                Bytes.toString(result.getValue(columnFamily.getBytes,columnName.getBytes))
              case "Int" =>
                Bytes.toInt(result.getValue(columnFamily.getBytes,columnName.getBytes))
              case "Long" =>
                Bytes.toLong(result.getValue(columnFamily.getBytes,columnName.getBytes))
              case "Float" =>
                Bytes.toFloat(result.getValue(columnFamily.getBytes,columnName.getBytes))
              case "Double" =>
                Bytes.toDouble(result.getValue(columnFamily.getBytes,columnName.getBytes))
    
            }
          }
          case _ => {
            resultType match {
              case "String" =>
                ""
              case "Int" =>
                0
              case "Long" =>
                0
              case "Double" =>
                0.0
            }
          }
        }
        column
      }
    }
    Resolver

    做个测试:

    object CustomHbaseTest {
      def main(args: Array[String]): Unit = {
        val startTime = System.currentTimeMillis()
        val sparkConf: SparkConf = new SparkConf()
          .setMaster("local[6]")
          .setAppName("query")
          .set("spark.worker.timeout" , GlobalConfigUtils.sparkWorkTimeout)
          .set("spark.cores.max" , GlobalConfigUtils.sparkMaxCores)
          .set("spark.rpc.askTimeout" , GlobalConfigUtils.sparkRpcTimeout)
          .set("spark.task.macFailures" , GlobalConfigUtils.sparkTaskMaxFailures)
          .set("spark.speculation" , GlobalConfigUtils.sparkSpeculation)
          .set("spark.driver.allowMutilpleContext" , GlobalConfigUtils.sparkAllowMutilpleContext)
          .set("spark.serializer" , GlobalConfigUtils.sparkSerializer)
          .set("spark.buffer.pageSize" , GlobalConfigUtils.sparkBuferSize)
          .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
          .set("spark.driver.host", "localhost")
        val sparkSession: SparkSession = SparkSession.builder()
          .config(sparkConf)
          .enableHiveSupport() //开启支持hive
          .getOrCreate()
        var hbasetable = sparkSession
          .read
          .format("com.df.test_custom.customSource")
          .options(
            Map(
              "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
              "hbase_table_name" -> "order_info",
              "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
        )).load()
    
        hbasetable.createOrReplaceTempView("orderData")
    
        sparkSession.sql(
          """
            |select * from orderData
          """.stripMargin).show()
        val endTime = System.currentTimeMillis()
        println(s"花费时间:${endTime - startTime}")
      }
    }
    test

    所有代码整合完毕之后,跑通了,但是确发现查询出来的数据和具体的列值对不上

    比如:

    var hbasetable = sparkSession
          .read
          .format("com.df.test_custom.customSource")
          .options(
            Map(
              "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
              "hbase_table_name" -> "order_info",
              "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
        )).load()

    我指定的sparkSQL表的schema和Hbase的schema如上面的代码;

    但是我查询出来的数据是这样的:

    hbasetable.createOrReplaceTempView("orderData")
    
        sparkSession.sql(
          """
            |select * from orderData
          """.stripMargin).show()

    从上面的图可以看到,其实好多列的顺序对不上了!

    问题所在的原因:

    def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
        if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
        val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
    
        rs.toMap
      }

    可以看到,最后是---------->  rs.toMap

    您注意了,scala中的这个map是不能保证顺序的,举个栗子:

    object TestMap {
      def main(args: Array[String]): Unit = {
        val arr1 = Array("java" , "scla" , "javascripe" , "ii" , "wqe" , "qaz")
        val arr2 = Array("java" , "scla" , "javascripe" , "ii" , "wqe" , "qaz")
        val toMap: Map[String, String] = arr1.zip(arr2).toMap
        for((k,v) <- toMap){
          println(s"k :${k} , v:${v}")
        }
      }
    }

    结果是这样的:

    明显发现,这个结果没按照最初zip后的顺序来,问题其实就是在toMap这里

    解决:

    在jdk1.5之后,给出了一个可以保持插入顺序强相关的Map,就是 :LinkedHashMap

    所以说,解决方案就是,将scala中的Map转成LinkedHashMap

    1):修改feedTypes

      def feedTypes( mapping: util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
        val hbaseFields = mapping.map{
          case (k,v) =>
            val field = k.copy(fieldType=v.fieldType)
            field
        }
        hbaseFields.toArray
      }
    
    //  def feedTypes( mapping: Map[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
    //    val hbaseFields = mapping.map{
    //      case (k,v) =>
    //        val field = k.copy(fieldType=v.fieldType)
    //        field
    //    }
    //    hbaseFields.toArray
    //  }

    2):修改tableSchemaFieldMapping

      def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField] = {
        if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
        val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
        val linkedHashMap = new util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField]()
        for(arr <- rs){
          linkedHashMap.put(arr._1 , arr._2)
        }
        linkedHashMap
      }
    
    //  def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
    //    if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
    //    val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
    //    rs.toMap
    //  }

    然后在跑test代码:结果

    跑通!!!

    PS:直接赋值我的代码就能用了

    另外:

    var hbasetable = sparkSession
          .read
          .format("com.df.test_custom.customSource")
          .options(
            Map(
              "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
              "hbase_table_name" -> "order_info",
              "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
        )).load()
    sparksql_table_schema和hbase_table_schema 顺序必须一样
  • 相关阅读:
    private SortedDictionary<string, object> Dic_values = new SortedDictionary<string, object>();
    [Luogu 2817]宋荣子的城堡
    [测试题]等效集合
    [SDOI 2009]HH去散步
    [HNOI 2013]比赛
    [SCOI 2016]背单词
    [测试题]圆圈
    [Luogu 3389]【模板】高斯消元法
    [Codeforces 505C]Mr. Kitayuta, the Treasure Hunter
    [Codeforces 448C]Painting Fence
  • 原文地址:https://www.cnblogs.com/niutao/p/10801259.html
Copyright © 2020-2023  润新知