Kudu支持许多DML类型的操作,其中一些操作包含在Spark on Kudu集成
包括:
-
INSERT - 将DataFrame的行插入Kudu表。请注意,虽然API完全支持INSERT,但不鼓励在Spark中使用它。使用INSERT是有风险的,因为Spark任务可能需要重新执行,这意味着可能要求再次插入已插入的行。这样做会导致失败,因为如果行已经存在,INSERT将不允许插入行(导致失败)。相反,我们鼓励使用下面描述的INSERT_IGNORE。
-
INSERT-IGNORE - 将DataFrame的行插入Kudu表。如果表存在,则忽略插入动作。
-
DELETE - 从Kudu表中删除DataFrame中的行
-
UPSERT - 如果存在,则在Kudu表中更新DataFrame中的行,否则执行插入操作。
-
UPDATE - 更新dataframe中的行
Insert操作
import org.apache.kudu.spark.kudu.KuduContext import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession import org.apache.kudu.spark.kudu._ /** * Created by angel; */ object Insert { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("AcctfileProcess") //设置Master_IP并设置spark参数 .setMaster("local") .set("spark.worker.timeout", "500") .set("spark.cores.max", "10") .set("spark.rpc.askTimeout", "600s") .set("spark.network.timeout", "600s") .set("spark.task.maxFailures", "1") .set("spark.speculationfalse", "false") .set("spark.driver.allowMultipleContexts", "true") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sparkContext = SparkContext.getOrCreate(sparkConf) val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext //使用spark创建kudu表 val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051" val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext) //TODO 1:定义kudu表 val kuduTableName = "spark_kudu_tbl" //TODO 2:配置kudu参数 val kuduOptions: Map[String, String] = Map( "kudu.table" -> kuduTableName, "kudu.master" -> kuduMasters) import sqlContext.implicits._ //TODO 3:定义数据 val customers = Array( Customer("jane", 30, "new york"), Customer("jordan", 18, "toronto")) //TODO 4:创建RDD val customersRDD = sparkContext.parallelize(customers) //TODO 5:将RDD转成dataFrame val customersDF = customersRDD.toDF() //TODO 6:将数据插入kudu表 kuduContext.insertRows(customersDF, kuduTableName) //TODO 7:将插入的数据读取出来 sqlContext.read.options(kuduOptions).kudu.show } }
Delete操作
import org.apache.kudu.spark.kudu._ import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession /** * Created by angel; */ object Delete { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("AcctfileProcess") //设置Master_IP并设置spark参数 .setMaster("local") .set("spark.worker.timeout", "500") .set("spark.cores.max", "10") .set("spark.rpc.askTimeout", "600s") .set("spark.network.timeout", "600s") .set("spark.task.maxFailures", "1") .set("spark.speculationfalse", "false") .set("spark.driver.allowMultipleContexts", "true") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sparkContext = SparkContext.getOrCreate(sparkConf) val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext //使用spark创建kudu表 val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051" val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext) //TODO 1:定义kudu表 val kuduTableName = "spark_kudu_tbl" //TODO 2:配置kudu参数 val kuduOptions: Map[String, String] = Map( "kudu.table" -> kuduTableName, "kudu.master" -> kuduMasters) import sqlContext.implicits._ //TODO 3:定义数据 val customers = Array( Customer("jane", 30, "new york"), Customer("jordan", 18, "toronto")) //TODO 4:创建RDD val customersRDD = sparkContext.parallelize(customers) //TODO 5:将RDD转成dataFrame val customersDF = customersRDD.toDF() //TODO 6:注册表 customersDF.registerTempTable("customers") //TODO 7:编写SQL语句,过滤出想要的数据 val deleteKeysDF = sqlContext.sql("select name from customers where age > 20") //TODO 8:使用kuduContext执行删除操作 kuduContext.deleteRows(deleteKeysDF, kuduTableName) //TODO 9:查看kudu表中的数据 sqlContext.read.options(kuduOptions).kudu.show } }
import org.apache.kudu.spark.kudu._ import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession /** * Created by angel; */ object Upsert { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("AcctfileProcess") //设置Master_IP并设置spark参数 .setMaster("local") .set("spark.worker.timeout", "500") .set("spark.cores.max", "10") .set("spark.rpc.askTimeout", "600s") .set("spark.network.timeout", "600s") .set("spark.task.maxFailures", "1") .set("spark.speculationfalse", "false") .set("spark.driver.allowMultipleContexts", "true") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sparkContext = SparkContext.getOrCreate(sparkConf) val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext //使用spark创建kudu表 val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051" val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext) //TODO 1:定义kudu表 val kuduTableName = "spark_kudu_tbl" //TODO 2:配置kudu参数 val kuduOptions: Map[String, String] = Map( "kudu.table" -> kuduTableName, "kudu.master" -> kuduMasters) import sqlContext.implicits._ //TODO 3:定义数据集 val newAndChangedCustomers = Array( Customer("michael", 25, "chicago"), Customer("denise" , 43, "winnipeg"), Customer("jordan" , 19, "toronto")) //TODO 4:将数据集转换成dataframe val newAndChangedRDD = sparkContext.parallelize(newAndChangedCustomers) val newAndChangedDF = newAndChangedRDD.toDF() //TODO 5:使用upsert来更新数据集 kuduContext.upsertRows(newAndChangedDF, kuduTableName) //TODO 6:读取kudu中的数据 sqlContext.read.options(kuduOptions).kudu.show } }
import org.apache.kudu.spark.kudu._ import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession /** * Created by angel; */ object Update { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("AcctfileProcess") //设置Master_IP并设置spark参数 .setMaster("local") .set("spark.worker.timeout", "500") .set("spark.cores.max", "10") .set("spark.rpc.askTimeout", "600s") .set("spark.network.timeout", "600s") .set("spark.task.maxFailures", "1") .set("spark.speculationfalse", "false") .set("spark.driver.allowMultipleContexts", "true") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sparkContext = SparkContext.getOrCreate(sparkConf) val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext //使用spark创建kudu表 val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051" val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext) //TODO 1:定义kudu表 val kuduTableName = "spark_kudu_tbl" //TODO 2:配置kudu参数 val kuduOptions: Map[String, String] = Map( "kudu.table" -> kuduTableName, "kudu.master" -> kuduMasters) //TODO 3:准备数据集 val modifiedCustomers = Array(Customer("michael", 25, "toronto")) val modifiedCustomersRDD = sparkContext.parallelize(modifiedCustomers) //TODO 4:将数据集转化成dataframe import sqlContext.implicits._ val modifiedCustomersDF = modifiedCustomersRDD.toDF() //TODO 5:执行更新操作 kuduContext.updateRows(modifiedCustomersDF, kuduTableName) //TODO 6:查看kudu数据 sqlContext.read.options(kuduOptions).kudu.show } }