Flink支持广播变量,就是将数据广播到具体的taskmanager上,数据存储在内存中,这样可以减缓大量的shuffle操作;
比如在数据join阶段,不可避免的就是大量的shuffle操作,我们可以把其中一个dataSet广播出去,一直加载到taskManager的内存中,可以直接在内存中拿数据,避免了大量的shuffle,导致集群性能下降;
注意:因为广播变量是要把dataset广播到内存中,所以广播的数据量不能太大,否则会出现OOM这样的问题
Broadcast:Broadcast是通过withBroadcastSet(dataset,string)来注册的
Access:通过getRuntimeContext().getBroadcastVariable(String)访问广播变量
/** * Created by angel; */ object BrodCast { def main(args: Array[String]): Unit = { val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment //TODO data2 join data3的数据,使用广播变量完成 val data2 = new mutable.MutableList[(Int, Long, String)] data2.+=((1, 1L, "Hi")) data2.+=((2, 2L, "Hello")) data2.+=((3, 2L, "Hello world")) val ds1 = env.fromCollection(Random.shuffle(data2)) val data3 = new mutable.MutableList[(Int, Long, Int, String, Long)] data3.+=((1, 1L, 0, "Hallo", 1L)) data3.+=((2, 2L, 1, "Hallo Welt", 2L)) data3.+=((2, 3L, 2, "Hallo Welt wie", 1L)) val ds2 = env.fromCollection(Random.shuffle(data3)) //todo 使用内部类RichMapFunction,提供open和map,可以完成join的操作 val result = ds1.map(new RichMapFunction[(Int , Long , String) , ArrayBuffer[(Int , Long , String , String)]] { var brodCast:mutable.Buffer[(Int, Long, Int, String, Long)] = null override def open(parameters: Configuration): Unit = { import scala.collection.JavaConverters._ //asScala需要使用隐式转换 brodCast = this.getRuntimeContext.getBroadcastVariable[(Int, Long, Int, String, Long)]("ds2").asScala } override def map(value: (Int, Long, String)):ArrayBuffer[(Int , Long , String , String)] = { val toArray: Array[(Int, Long, Int, String, Long)] = brodCast.toArray val array = new mutable.ArrayBuffer[(Int , Long , String , String)] var index = 0 var a:(Int, Long, String, String) = null while(index < toArray.size){ if(value._2 == toArray(index)._5){ a = (value._1 , value._2 , value._3 , toArray(index)._4) array += a } index = index + 1 } array } }).withBroadcastSet(ds2 , "ds2") println(result.collect()) } }