caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面
有一些参数需要计算的,也不是乱设置。
假设我们有50000个训练样本,batch_size为64,即每批次处理64个样本,那么需要迭代50000/64=782次才处理完一次全部的样本。我们把处理完一次所有的样本,称之为一代,即epoch。所以,这里的test_interval设置为782,即处理完一次所有的训练数据后,才去进行测试。如果我们想训练100代,则需要设置max_iter为78200.
同理,如果有10000个测试样本,batch_size设为32,那么需要迭代10000/32=313次才完整地测试完一次,所以设置test_iter为313.
学习率变化规律我们设置为随着迭代次数的增加,慢慢变低。总共迭代78200次,我们将变化lr_rate三次,所以stepsize设置为78200/3=26067,即每迭代26067次,我们就降低一次学习率。
下面是生成solver文件的python代码,比较简单:
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 17 18:20:57 2016
@author: root
"""
path='/home/xxx/data/'
solver_file=path+'solver.prototxt' #solver文件保存位置
sp={}
sp['train_net']=‘“’+path+'train.prototxt”' # 训练配置文件
sp['test_net']=‘“’+path+'val.prototxt”' # 测试配置文件
sp['test_iter']='313' # 测试迭代次数
sp['test_interval']='782' # 测试间隔
sp['base_lr']='0.001' # 基础学习率
sp['display']='782' # 屏幕日志显示间隔
sp['max_iter']='78200' # 最大迭代次数
sp['lr_policy']='“step”' # 学习率变化规律
sp['gamma']='0.1' # 学习率变化指数
sp['momentum']='0.9' # 动量
sp['weight_decay']='0.0005' # 权值衰减
sp['stepsize']='26067' # 学习率变化频率
sp['snapshot']='7820' # 保存model间隔
sp['snapshot_prefix']=‘"snapshot"’ # 保存的model前缀
sp['solver_mode']='GPU' # 是否使用gpu
sp['solver_type']='SGD' # 优化算法
def write_solver():
#写入文件
with open(solver_file, 'w') as f:
for key, value in sorted(sp.items()):
if not(type(value) is str):
raise TypeError('All solver parameters must be strings')
f.write('%s: %s
' % (key, value))
if __name__ == '__main__':
write_solver()
执行上面的文件,我们就会得到一个solver.prototxt文件,有了这个文件,我们下一步就可以进行训练了。