• python计算矩阵均匀分布程度


    计算N×M(建议维度大于100*100)的0,1矩阵均匀分布程度,值由0到1表示不均匀到均匀

    import numpy as np
    
    def make_rand_matrix(side=20): # 制作随机矩阵,用于测试
        a = np.random.random((side,side))
        for i in range(0,side):
            for j in range(0,side):
                if a[i,j]>0.3:
                    a[i,j] = 1
                else:
                    a[i,j] = 0
        return a
    
    def get_min_std_matrix(A): # 制作最分布均匀矩阵
        sum_ = sum(sum(A))
        [x_side, y_side] = A.shape
        B = np.zeros((x_side,y_side))
        long_ = int(x_side*y_side/sum_)
        cnt = 0
        for i in range(0,x_side):
            for j in range(0,y_side):
                cnt = cnt + 1
                if cnt%long_ == 0:
                    B[i,j] = 1
        return B
    
    def get_max_std_matrix(A): # 制作分布最不均匀矩阵
        sum_ = sum(sum(A))
        [x_side, y_side] = A.shape
        B = np.zeros((x_side,y_side))
        cnt = 0
        for i in range(0,x_side):
            for j in range(0,y_side):
                B[i,j] = 1
                cnt = cnt + 1
                if cnt >= sum_:
                    break
        return B
    
    def get_rand_std(rand_matrix): # 输入矩阵为0,1矩阵,计算矩阵分布均匀程度
        sum_ = sum(sum(rand_matrix))
        [x_side, y_side] = rand_matrix.shape
        fit_x_side = int(x_side/10)
        fit_y_side = int(y_side/10)
        location_p = []
        for i in range(0, x_side-10, int(fit_x_side/2)): # 让每个元素被扫描两次(规则自己随便定,保证元素都被扫描到就行)
            for j in range(0,y_side-10, int(fit_y_side/2)):
                temp_matrix = rand_matrix[i:i+10,j:j+10]
                cnt_p = sum(sum(temp_matrix))
                location_p.append(cnt_p)
        std = np.std(location_p)
        return std
    
    def get_stand_std(A): # 将均匀程度分布在0,1之间,1表示分布最均匀
        if sum(sum(A)) == 0:
            print('不得传入全0矩阵')
            exit()
        A_max = get_max_std_matrix(A)
        A_min = get_min_std_matrix(A)
        A_std = get_rand_std(A)
        A_max_std = get_rand_std(A_max)
        A_min_std = get_rand_std(A_min)
        if A_std < A_min_std:
            return 1
        else:
            return max(0,(A_max_std-A_std)/(A_max_std-A_min_std))
    
    if __name__ == "__main__":
        # 当矩阵为0或者1元素过少,计算分布没有意义
        A = make_rand_matrix(100) # numpy产生随机0,1矩阵均匀程度在0.9~1之间
        print(get_stand_std(A))
    

      

  • 相关阅读:
    网络运维基础知识手册
    运维基础1
    url protocol
    ASP.NET MVC
    关于写博客的想法
    Struts2 配置Action详解
    常用的API接口
    利用Console来学习、调试JavaScript
    JBPM4.4学习笔记
    Java设计模式之——工厂模式
  • 原文地址:https://www.cnblogs.com/niulang/p/12214691.html
Copyright © 2020-2023  润新知