• 数据统计


    Outline

    • tf.norm

    • tf.reduce_min/max/mean

    • tf.argmax/argmin

    • tf.equal

    • tf.unique

    Vector norm

    • Eukl. Norm

    [||x||_2=|sum_{k}x_k^2|^{frac{1}{2}} ]

    • Max.norm

    [||x||_{infty}=max_k|x_k| ]

    • L1-Norm

    [||x||_1=sum_{k}|x_k| ]

    • Here talks about Vector Norm

    Eukl. Norm

    import tensorflow as tf
    
    a = tf.ones([2, 2])
    a
    
    <tf.Tensor: id=11, shape=(2, 2), dtype=float32, numpy=
    array([[1., 1.],
           [1., 1.]], dtype=float32)>
    
    tf.norm(a)
    
    <tf.Tensor: id=7, shape=(), dtype=float32, numpy=2.0>
    
    tf.sqrt(tf.reduce_sum(tf.square(a)))
    
    <tf.Tensor: id=16, shape=(), dtype=float32, numpy=2.0>
    
    a = tf.ones([4, 28, 28, 3])
    a.shape
    
    TensorShape([4, 28, 28, 3])
    
    tf.norm(a)
    
    <tf.Tensor: id=25, shape=(), dtype=float32, numpy=96.99484>
    
    tf.sqrt(tf.reduce_sum(tf.square(a)))
    
    <tf.Tensor: id=30, shape=(), dtype=float32, numpy=96.99484>
    

    L1 Norm

    b = tf.ones([2, 2])
    
    tf.norm(b)
    
    <tf.Tensor: id=45, shape=(), dtype=float32, numpy=2.0>
    
    tf.norm(b, ord=2, axis=1)
    
    <tf.Tensor: id=51, shape=(2,), dtype=float32, numpy=array([1.4142135, 1.4142135], dtype=float32)>
    
    tf.norm(b, ord=1)
    
    <tf.Tensor: id=56, shape=(), dtype=float32, numpy=4.0>
    
    # 列为整体
    tf.norm(b, ord=1, axis=0)
    
    <tf.Tensor: id=66, shape=(2,), dtype=float32, numpy=array([2., 2.], dtype=float32)>
    
    # 行为整体
    tf.norm(b, ord=1, axis=1)
    
    <tf.Tensor: id=71, shape=(2,), dtype=float32, numpy=array([2., 2.], dtype=float32)>
    

    reduce_min/max/mean

    • reduce,操作可能会有减维的功能,如[2,2],对行求max,会变成[2]
    a = tf.random.normal([4, 10])
    
    tf.reduce_min(a), tf.reduce_max(a), tf.reduce_mean(a)
    
    (<tf.Tensor: id=80, shape=(), dtype=float32, numpy=-2.215113>,
     <tf.Tensor: id=82, shape=(), dtype=float32, numpy=1.9458845>,
     <tf.Tensor: id=84, shape=(), dtype=float32, numpy=-0.045550883>)
    
    # 对某一行求max
    tf.reduce_min(a, axis=1), tf.reduce_max(a, axis=1), tf.reduce_mean(a, axis=1)
    
    (<tf.Tensor: id=98, shape=(4,), dtype=float32, numpy=array([-2.215113 , -1.5824796, -1.4861531, -1.3477703], dtype=float32)>,
     <tf.Tensor: id=100, shape=(4,), dtype=float32, numpy=array([0.9380455, 1.1625607, 1.9458845, 1.492183 ], dtype=float32)>,
     <tf.Tensor: id=102, shape=(4,), dtype=float32, numpy=array([-0.48791748,  0.25639585,  0.07420422, -0.02488617], dtype=float32)>)
    

    argmax/argmin

    a.shape
    
    TensorShape([4, 10])
    
    tf.argmax(a).shape
    
    TensorShape([10])
    
    # 返回index
    tf.argmax(a)
    
    <tf.Tensor: id=112, shape=(10,), dtype=int64, numpy=array([1, 1, 2, 3, 2, 1, 3, 1, 2, 1])>
    
    # 对第1维作用
    tf.argmin(a).shape
    
    TensorShape([10])
    
    # 对第2维作用
    tf.argmin(a, axis=1).shape
    
    TensorShape([4])
    

    tf.equal

    a = tf.constant([1, 2, 3, 2, 5])
    
    b = tf.range(5)
    
    tf.equal(a, b)
    
    <tf.Tensor: id=186, shape=(5,), dtype=bool, numpy=array([False, False, False, False, False])>
    
    res = tf.equal(a, b)
    
    # 对True和False转换为1和0
    tf.reduce_sum(tf.cast(res, dtype=tf.int32))
    
    <tf.Tensor: id=191, shape=(), dtype=int32, numpy=0>
    

    Accuracy

    a = tf.random.normal([2, 3])
    a
    
    <tf.Tensor: id=198, shape=(2, 3), dtype=float32, numpy=
    array([[ 0.25201225, -1.3897187 ,  0.29240564],
           [-1.0671712 ,  2.1487093 ,  0.690736  ]], dtype=float32)>
    
    pred = tf.cast(tf.argmax(a, axis=1), dtype=tf.int32)
    pred.shape
    
    TensorShape([2])
    
    y = tf.constant([2, 1])
    y
    
    <tf.Tensor: id=163, shape=(2,), dtype=int32, numpy=array([2, 1], dtype=int32)>
    
    tf.equal(y, pred)
    
    <tf.Tensor: id=165, shape=(2,), dtype=bool, numpy=array([ True,  True])>
    
    correct = tf.reduce_sum(tf.cast(tf.equal(y, pred), dtype=tf.int32))
    
    correct
    
    <tf.Tensor: id=170, shape=(), dtype=int32, numpy=2>
    
    correct / 2
    
    <tf.Tensor: id=175, shape=(), dtype=float64, numpy=1.0>
    

    tf.unique

    • 用于去重
    a = tf.range(5)
    a
    
    <tf.Tensor: id=235, shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>
    
    # 返回索引
    tf.unique(a)
    
    Unique(y=<tf.Tensor: id=237, shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>, idx=<tf.Tensor: id=238, shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4], dtype=int32)>)
    
    a = tf.constant([4, 2, 2, 4, 3])
    a
    
    <tf.Tensor: id=226, shape=(5,), dtype=int32, numpy=array([4, 2, 2, 4, 3], dtype=int32)>
    
    res = tf.unique(a)
    
    Unique(y=<tf.Tensor: id=228, shape=(3,), dtype=int32, numpy=array([4, 2, 3], dtype=int32)>, idx=<tf.Tensor: id=229, shape=(5,), dtype=int32, numpy=array([0, 1, 1, 0, 2], dtype=int32)>)
  • 相关阅读:
    【转】 矩阵构造方法
    CODEVS1187 Xor最大路径 (Trie树)
    POJ2001 Shortest Prefixes (Trie树)
    CODEVS1079 回家 (最短路)
    CODEVS2144 砝码称重2 (哈希表)
    CODEVS1380 没有上司的舞会 (树形DP)
    JAVA 多态和异常处理作业——动手动脑以及课后实验性问题
    再读大道之简第七章第八章
    JAVA 接口与继承作业——动手动脑以及课后实验性问题
    再读大道至简第六章
  • 原文地址:https://www.cnblogs.com/nickchen121/p/10851359.html
Copyright © 2020-2023  润新知