大家先从ThreadPoolExecutor的总体流程入手:
针对ThreadPoolExecutor代码,我们来看下execute方法:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); //poolSize大于等于corePoolSize时不增加线程,反之新初始化线程 if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) { //线程执行状态外为执行,同时可以添加到队列中 if (runState == RUNNING && workQueue.offer(command)) { if (runState != RUNNING || poolSize == 0) ensureQueuedTaskHandled(command); } //poolSize大于等于corePoolSize时,新初始化线程 else if (!addIfUnderMaximumPoolSize(command)) //无法添加初始化执行线程,怎么执行reject操作(调用RejectedExecutionHandler) reject(command); // is shutdown or saturated } }
我们再看下真正的线程执行者(Worker):
private final class Worker implements Runnable { /** * Runs a single task between before/after methods. */ private void runTask(Runnable task) { final ReentrantLock runLock = this.runLock; runLock.lock(); try { /* * If pool is stopping ensure thread is interrupted; * if not, ensure thread is not interrupted. This requires * a double-check of state in case the interrupt was * cleared concurrently with a shutdownNow -- if so, * the interrupt is re-enabled. */ //当线程池的执行状态为关闭等,则执行当前线程的interrupt()操作 if ((runState >= STOP || (Thread.interrupted() && runState >= STOP)) && hasRun) thread.interrupt(); /* * Track execution state to ensure that afterExecute * is called only if task completed or threw * exception. Otherwise, the caught runtime exception * will have been thrown by afterExecute itself, in * which case we don't want to call it again. */ boolean ran = false; beforeExecute(thread, task); try { //任务执行 task.run(); ran = true; afterExecute(task, null); ++completedTasks; } catch (RuntimeException ex) { if (!ran) afterExecute(task, ex); throw ex; } } finally { runLock.unlock(); } } /** * Main run loop */ public void run() { try { hasRun = true; Runnable task = firstTask; firstTask = null; //判断是否存在需要执行的任务 while (task != null || (task = getTask()) != null) { runTask(task); task = null; } } finally { //如果没有,则将工作线程移除,当poolSize为0是则尝试关闭线程池 workerDone(this); } } } /* Utilities for worker thread control */ /** * Gets the next task for a worker thread to run. The general * approach is similar to execute() in that worker threads trying * to get a task to run do so on the basis of prevailing state * accessed outside of locks. This may cause them to choose the * "wrong" action, such as trying to exit because no tasks * appear to be available, or entering a take when the pool is in * the process of being shut down. These potential problems are * countered by (1) rechecking pool state (in workerCanExit) * before giving up, and (2) interrupting other workers upon * shutdown, so they can recheck state. All other user-based state * changes (to allowCoreThreadTimeOut etc) are OK even when * performed asynchronously wrt getTask. * * @return the task */ Runnable getTask() { for (;;) { try { int state = runState; if (state > SHUTDOWN) return null; Runnable r; if (state == SHUTDOWN) // Help drain queue r = workQueue.poll(); //当线程池大于corePoolSize,同时,存在执行超时时间,则等待相应时间,拿出队列中的线程 else if (poolSize > corePoolSize || allowCoreThreadTimeOut) r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS); else //阻塞等待队列中可以取到新线程 r = workQueue.take(); if (r != null) return r; //判断线程池运行状态,如果大于corePoolSize,或者线程队列为空,也或者线程池为终止的工作线程可以销毁 if (workerCanExit()) { if (runState >= SHUTDOWN) // Wake up others interruptIdleWorkers(); return null; } // Else retry } catch (InterruptedException ie) { // On interruption, re-check runState } } } /** * Performs bookkeeping for an exiting worker thread. * @param w the worker */ //记录执行任务数量,将工作线程移除,当poolSize为0是则尝试关闭线程池 void workerDone(Worker w) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; workers.remove(w); if (--poolSize == 0) tryTerminate(); } finally { mainLock.unlock(); } }
通过上述代码,总结下四个关键字的用法
- corePoolSize 核心线程数量
线程保有量,线程池总永久保存执行线程的数量
- maximumPoolSize 最大线程数量
最大线程量,线程最多不能超过此属性设置的数量,当大于线程保有量后,会新启动线程来满足线程执行。
- 线程存活时间
获取队列中任务的超时时间,当阈值时间内无法获取线程,则会销毁处理线程,前提是线程数量在corePoolSize 以上
- 执行队列
执行队列是针对任务的缓存,任务在提交至线程池时,都会压入到执行队列中。所以这里大家最好设置下队列的上限,防止溢出
ThreadPoolExecuter的几种实现
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); }
- CachedThreadPool 执行线程不固定,
坏处:只能用在短时间完成的任务(占用时间较长的操作可以导致线程数无限增大,系统资源耗尽)
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); }
- 单线程线程池
好处:针对单cpu,单线程避免系统资源的抢夺
坏处:多cpu多线程时,不能完全利用cpu资源
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), threadFactory); }
- 固定长度线程池
好处:线程数量固定,不会存在线程重复初始化
坏处:没有对队列大小进行限制,线程初始化后,再也不能回收线程资源