• 算法思想之动态规划


    动态规划一直被认为是最难理解的一种算法思想,什么重叠子问题、动态转移方程、最优子结构等等,一听就高深莫测,没有往下学习下去的动力

    一、初识动态规划

    废话不多说,我们直接先上一个经典的例子。那就是耳熟能详的斐波那契数列问题。我们先来看一下问题的定义。

    斐波那契数列的定义如下:    斐波那契数列指的是这样一个数列 0,1, 123581321345589144,.....   它以递归的方法来定义: F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

    1. 递归解决:

         这个例子最直观的方法就是用递归的方式来实现,毕竟斐波那契数列是用递归来定义的。我们来看一下代码实现。

    def fibs(n):
         if n<2:
              return n
         return fibs(n-1)+fibs(n-2)

    C#实现

    public static int Foo(int i)
            {
                if (i <= 0)
                {
                    return 0;
                }
                else if (i > 0 && i <= 2)
                {
                    return 1;
                }
                else
                {
                    return Foo(i - 1) + Foo(i - 2);
                }
            }

    这样是不是很简单。我们接下来看一下调用的递归树。我们以fibs(6)为例。

     其中每个结点表示要计算的斐波那契数列的第几项,我们可以从上图发现,会出现许多重复计算的问题,比如fib(4)就计算了两次。这样就会带来时间和空间上的消耗,那我们有什么方式可以避免重复计算的问题。我们可以使用递归中的“备忘录”功能来解决。我们来看一下代码如何实现。

    二、用动态规划解决

    我们把整个求解过程分为n个阶段,每个阶段去求解数列对应项的值。我们在解决当前问题时,也就是求解该对应项的值的时候,会依赖过去的状态,也就是前面几项的值来计算。比如我们在求解fibs(6)的时候,我们需要用到fibs(5)和fibs(4)这两项。 我们来定义一个数组,来记录每项的状态。我们也叫做状态转移矩阵。 按照斐波那契数列的定义:

    F(0)=0,F(1)=1
    F(n)=F(n-1)+F(n-2) (n>=2)

    我们可以看到F(n)的值只与他的前两个状态有关。所以我们只要知道他的前两个状态,就可以求出F(n)。

    1. 初始化值F(0)=0,F(1)=1,我们直接放入数组中。
    2. 要想计算F(2),我们需要知道F(0)和F(1),因为上一步已经放入数组中,我们直接拿来用就好了,然后把F(2)的结果放入数组中。
    3. 要想计算F(3),我们需要知道F(2)和F(1),因为F(2)和F(1)已经存在数组里了,我们直接拿来用就好了,然后把F(3)的结果放入数组中。

        ....

     依此类推,知道计算到n为止。整个状态转移矩阵就计算好了。如下图所示。我们以求解F(5)为例。

     下面我们直接看代码实现,这样比较简单明了。

    def fibs(n):
         if n<2:
              return n
         dp=[0 for _ in range(n+1)]
         dp[0]=0
         dp[1]=1
         for i in range(2,n+1):
              dp[i]=dp[i-1]+dp[i-2]
         return dp[n]
    print(fibs(6))

    上面的代码是不是很简洁明了。这就是一种用动态规划来解决问题的思路。我们把问题分解为n个阶段,一个阶段一个阶段去求解。然后通过当前状态,来求出下一个状态,动态的往前推进,这是不是还挺形象的

  • 相关阅读:
    【转】JS模块化工具requirejs教程(二):基本知识
    【转】JS模块化工具requirejs教程(一):初识requirejs
    【转】批处理命令 For循环命令详解!
    【转】NodeJS教程--基于ExpressJS框架的文件上传
    【转】WebSocket 是什么原理?为什么可以实现持久连接?
    网页工具地址
    【转】DataURL在Web浏览器中的兼容性总结
    侯捷STL学习(一)--顺序容器测试
    strstr-strcat实现
    算法设计与分析
  • 原文地址:https://www.cnblogs.com/netlock/p/15184374.html
Copyright © 2020-2023  润新知