• 洛谷 P4948 拉格朗日多项式插值(杜老师板子)


    https://www.luogu.org/problemnew/show/P4948

    这篇博客主要目的是存一下的dls的神奇板子,本来应该是推公式或者二分做的

    但是dls的插值板子直接写好了这个特殊式子的算法......

    #include <bits/stdc++.h>
    #define endl '
    '
    #define ll long long
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mp make_pair
    #define pii pair<int,int>
    #define ull unsigned long long
    #define all(x) x.begin(),x.end()
    #pragma GCC optimize("unroll-loops")
    #define inline inline __attribute__(  
    (always_inline, __gnu_inline__, __artificial__)) 
    __attribute__((optimize("Ofast"))) __attribute__((target("sse"))) 
    __attribute__((target("sse2"))) __attribute__((target("mmx")))
    #define IO ios::sync_with_stdio(false);
    #define rep(ii,a,b) for(int ii=a;ii<=b;++ii)
    #define per(ii,a,b) for(int ii=b;ii>=a;--ii)
    #define for_node(x,i) for(int i=head[x];i;i=e[i].next)
    #define show(x) cout<<#x<<"="<<x<<endl
    #define showa(a,b) cout<<#a<<'['<<b<<"]="baidu<a[b]<<endl
    #define show2(x,y) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<endl
    #define show3(x,y,z) cout<<#x<<"="<<x<<" "<<#y<<"="<<y<<" "<<#z<<"="<<z<<endl
    #define show4(w,x,y,z) cout<<#w<<"="<<w<<" "<<#x<<"="<<x<<" "<<#y<<"="<<y<<" "<<#z<<"="<<z<<endl
    using namespace std;
    const int maxn=1e6+10,maxm=2e6+10;
    const int INF=0x3f3f3f3f;
    const ll mod=1e9+7;
    const double PI=acos(-1.0);
    //head
    int casn,n,m,k;
    int num[maxn];
    ll a[maxn];
    ll pow_mod(ll a,ll b,ll c=mod,ll ans=1){while(b){if(b&1) ans=(a*ans)%c;a=(a*a)%c,b>>=1;}return ans;}
    
    namespace polysum {
    	const int maxn=101000;
    	const ll mod=1e9+7;
    	ll a[maxn],f[maxn],g[maxn],p[maxn],p1[maxn],p2[maxn],b[maxn],h[maxn][2],C[maxn];
    	ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项
    		if (n<=d) return a[n];
    		p1[0]=p2[0]=1;
    		rep(i,0,d) {
    			ll t=(n-i+mod)%mod;
    			p1[i+1]=p1[i]*t%mod;
    		}
    		rep(i,0,d) {
    			ll t=(n-d+i+mod)%mod;
    			p2[i+1]=p2[i]*t%mod;
    		}
    		ll ans=0;
    		rep(i,0,d) {
    			ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
    			if ((d-i)&1) ans=(ans-t+mod)%mod;
    			else ans=(ans+t)%mod;
    		}
    		return ans;
    	}
    	void init(int maxm) {//初始化预处理阶乘和逆元(取模乘法)
    		f[0]=f[1]=g[0]=g[1]=1;
    		rep(i,2,maxm+4) f[i]=f[i-1]*i%mod;
    		g[maxm+4]=pow_mod(f[maxm+4],mod-2);
    		per(i,1,maxm+3) g[i]=g[i+1]*(i+1)%mod;
    	}
    	ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] sum_{i=0}^{n-1} a[i]
    		// m次多项式求第n项前缀和
    		a[m+1]=calcn(m,a,m+1);
    		rep(i,1,m+1) a[i]=(a[i-1]+a[i])%mod;
    		return calcn(m+1,a,n-1);
    	}
    	ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] sum_{i=0}^{n-1} a[i]*R^i
    		if (R==1) return polysum(n,a,m);
    		a[m+1]=calcn(m,a,m+1);
    		ll r=pow_mod(R,mod-2),p3=0,p4=0,c,ans;
    		h[0][0]=0;
    		h[0][1]=1;
    		rep(i,1,m+1) {
    			h[i][0]=(h[i-1][0]+a[i-1])*r%mod;
    			h[i][1]=h[i-1][1]*r%mod;
    		}
    		rep(i,0,m+1) {
    			ll t=g[i]*g[m+1-i]%mod;
    			if (i&1) p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod;
    			else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod;
    		}
    		c=pow_mod(p4,mod-2)*(mod-p3)%mod;
    		rep(i,0,m+1) h[i][0]=(h[i][0]+h[i][1]*c)%mod;
    		rep(i,0,m+1) C[i]=h[i][0];
    		ans=(calcn(m,C,n)*pow_mod(R,n)-c)%mod;
    		if (ans<0) ans+=mod;
    		return ans;
    	}
    }
    
    
    int main() {
    //#define test
    #ifdef test
    	auto _start = chrono::high_resolution_clock::now();
    	freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
    #endif
    	IO;
    	ll n,r,k;
    	cin>>n>>r>>k;
    	polysum::init(k+5);
    	rep(i,0,2010) a[i]=pow_mod(i,k);
    	ll ans=polysum::qpolysum(r,n+1,a,k+1);
    	if(k==0) ans=(ans-1+mod)%mod;
    	cout<<ans<<endl;
    #ifdef test
    	auto _end = chrono::high_resolution_clock::now();
      cerr << "elapsed time: " << chrono::duration<double, milli>(_end - _start).count() << " ms
    ";
    	fclose(stdin);fclose(stdout);system("out.txt");
    #endif
    	return 0;
    }
    

      

  • 相关阅读:
    11-基于CPCI的中频功率放大收发板
    10-基于TMS320C6678+XC7K325T的6U CPCI Full Camera Link图像处理平台
    141-FMC141-4路 250Msps/16bits ADC, FMC板卡
    125-FMC125-两路125Msps AD,两路160Msps DA FMC子卡模块
    164-基于TI DSP TMS320C6455和Altera FPGA EP2S130的Full CameraLink PDS150接口板卡
    北京太速科技有限公司 layout 事业部
    20-基于 DSP TMS320C6455的6U CPCI高速信号处理板卡
    64-基于TMS320C6455、XC5VSX95T 的6U CPCI无线通信处理平台
    18-基于双TMS320C6678 DSP的3U VPX的信号处理平台
    202-基于TI DSP TMS320C6678、Xilinx K7 FPGA XC72K325T的高速数据处理核心板
  • 原文地址:https://www.cnblogs.com/nervendnig/p/9996511.html
Copyright © 2020-2023  润新知