• 使用Keras实现机器翻译(英语—>法语)


    import numpy as np
    from keras.models import Model
    from keras.models import load_model
    from keras.layers import Input,LSTM,Dense
    batch_size = 64  # Batch size for training.
    epochs = 100  # Number of epochs to train for.
    latent_dim = 256  # Latent dimensionality of the encoding space.
    num_samples = 10000  # Number of samples to train on.
    # Path to the data txt file on disk.
    data_path = 'fra.txt'
    
    input_texts = []
    target_texts = []
    input_characters = set()
    target_characters = set()
    lines = open(data_path,encoding='utf-8').read().split('
    ')
    for index,line in enumerate(lines[: min(num_samples, len(lines) - 1)]):
        input_text, target_text = line.split('	')
        target_text = '	' + target_text + '
    '
        input_texts.append(input_text)
        target_texts.append(target_text)
        for char in input_text:
            if char not in input_characters:
                input_characters.add(char)
        for char in target_text:
            if char not in target_characters:
                target_characters.add(char)
    input_characters = sorted(list(input_characters))
    target_characters = sorted(list(target_characters))
    # 统计source和target的字符数
    num_encoder_tokens = len(input_characters)
    num_decoder_tokens = len(target_characters)
    # 取出最长的句子的长度
    max_encoder_seq_length = max([len(txt) for txt in input_texts])
    max_decoder_seq_length = max([len(txt) for txt in target_texts])
    # 打印具体的信息
    print('Number of samples:', len(input_texts))
    print('Number of unique input tokens:', num_encoder_tokens)
    print('Number of unique output tokens:', num_decoder_tokens)
    print('Max sequence length for inputs:', max_encoder_seq_length)
    print('Max sequence length for outputs:', max_decoder_seq_length)
    # 将它们转化为id的形式存储(char-to-id)
    input_token_index = dict(
        [(char, i) for i, char in enumerate(input_characters)])
    target_token_index = dict(
        [(char, i) for i, char in enumerate(target_characters)])
    # 初始化
    encoder_input_data = np.zeros(
        (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
        dtype='float32')
    decoder_input_data = np.zeros(
        (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
        dtype='float32')
    decoder_target_data = np.zeros(
        (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
        dtype='float32')
    print(encoder_input_data.shape)
    # 训练测试
    for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
        for t, char in enumerate(input_text):
            encoder_input_data[i, t, input_token_index[char]] = 1.
        for t, char in enumerate(target_text):
            # decoder_target_data比decoder_input_data提前一个时间步长
            decoder_input_data[i, t, target_token_index[char]] = 1.
            if t > 0:
                # decoder_target_data will be ahead by one timestep
                # and will not include the start character.
                decoder_target_data[i, t - 1, target_token_index[char]] = 1.
    # 定义输入序列并处理它
    encoder_inputs = Input(shape=(None, num_encoder_tokens))
    encoder = LSTM(latent_dim, return_state=True)
    encoder_outputs, state_h, state_c = encoder(encoder_inputs)
    # 我们丢弃' encoder_output ',只保留状态
    encoder_states = [state_h, state_c]
    
    # 设置解码器,使用' encoder_states '作为初始状态
    decoder_inputs = Input(shape=(None, num_decoder_tokens))
    # 我们设置解码器以返回完整的输出序列,并返回内部状态。我们不在训练模型中使用返回状态,但是我们将在推理中使用它们。
    decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                         initial_state=encoder_states)
    decoder_dense = Dense(num_decoder_tokens, activation='softmax')
    decoder_outputs = decoder_dense(decoder_outputs)
    
    # Define the model that will turn
    # `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
    model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
    #model.load_weights('s2s.h5')
    # Run training
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
    model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
    # 保存模型
    model.save('s2s.h5')
    
    # 接下来:推理模式(抽样)
    #  Here's the drill:
    # 1)编码输入,检索初始解码器状态
    # 2)以初始状态和“序列开始”token作为目标运行一个解码器步骤。输出将是下一个目标token
    # 3)重复当前目标token和当前状态
    
    
    # 定义抽样模型
    encoder_model = Model(encoder_inputs, encoder_states)
    decoder_state_input_h = Input(shape=(latent_dim,))
    decoder_state_input_c = Input(shape=(latent_dim,))
    decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
    decoder_outputs, state_h, state_c = decoder_lstm(
        decoder_inputs, initial_state=decoder_states_inputs)
    decoder_states = [state_h, state_c]
    decoder_outputs = decoder_dense(decoder_outputs)
    decoder_model = Model(
        [decoder_inputs] + decoder_states_inputs,
        [decoder_outputs] + decoder_states)
    # 反向查找令牌索引,将序列解码回可读的内容。
    reverse_input_char_index = dict(
        (i, char) for char, i in input_token_index.items())
    reverse_target_char_index = dict(
        (i, char) for char, i in target_token_index.items())
    
    def decode_sequence(input_seq):
        # 将输入编码为状态向量
        states_value = encoder_model.predict(input_seq)
        # 生成长度为1的空目标序列
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        # 用起始字符填充目标序列的第一个字符。
        target_seq[0, 0, target_token_index['	']] = 1.
        # 对一批序列的抽样循环(为了简化,这里我们假设批大小为1)
        stop_condition = False
        decoded_sentence = ''
        while not stop_condition:
            output_tokens, h, c = decoder_model.predict(
                [target_seq] + states_value)
            # Sample a token
            sampled_token_index = np.argmax(output_tokens[0, -1, :])
            sampled_char = reverse_target_char_index[sampled_token_index]
            decoded_sentence += sampled_char
            # 退出条件:到达最大长度或找到停止字符。
            if (sampled_char == '
    ' or len(decoded_sentence) > max_decoder_seq_length):
                stop_condition = True
            # 更新目标序列(长度1)
            target_seq = np.zeros((1, 1, num_decoder_tokens))
            target_seq[0, 0, sampled_token_index] = 1.
            # 更新状态
            states_value = [h, c]
        return decoded_sentence
    for seq_index in range(100):
        # 取一个序列(训练测试的一部分)来尝试解码
        input_seq = encoder_input_data[seq_index: seq_index + 1]
        decoded_sentence = decode_sequence(input_seq)
        print('-')
        print('Input sentence:', input_texts[seq_index])
        print('Decoded sentence:', decoded_sentence)

    数据集下载:http://www.manythings.org/anki/fra-eng.zip

  • 相关阅读:
    C++学习笔记(十六):友元
    C++学习笔记(十五):异常
    C++学习笔记(十四):模板
    C++学习笔记(十三):类、包和接口
    C++学习笔记(十二):类继承、虚函数、纯虚函数、抽象类和嵌套类
    C++学习笔记(十一):void*指针、类型转换和动态内存分配
    C++学习笔记(十):类
    quartz 实现调度任务 SchedulerManager
    Session 活化与钝化 与tomcat钝化驱动器
    web listener
  • 原文地址:https://www.cnblogs.com/ncuhwxiong/p/9824980.html
Copyright © 2020-2023  润新知