• 将mnist数据集存储到本地文件


    参考文章:

    http://www.csuldw.com/2016/02/25/2016-02-25-machine-learning-MNIST-dataset/

    import numpy as np
    import struct
    import matplotlib.pyplot as plt
    import os
    filename = 'data_AI/MNIST/train-images.idx3-ubyte'
    binfile = open(filename , 'rb')
    buf = binfile.read()
     
    index = 0
    magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)
    index += struct.calcsize('IIII' )
    images = []
    for i in range(numImages):
        imgVal = struct.unpack_from('>784B', buf, index)
        index += struct.calcsize('>784B')
        imgVal = list(imgVal)
        for j in range(len(imgVal)):
            if imgVal[j] > 1:
                imgVal[j] = 1
    
        images.append(imgVal)
    arrX = np.array(images)
    
    # 读取标签
    binFile = open('data_AI/MNIST/train-labels.idx1-ubyte','rb')
    buf = binFile.read()
    binFile.close()
    index = 0
    magic, numItems= struct.unpack_from('>II', buf,index)
    index += struct.calcsize('>II')
    labels = []
    for x in range(numItems):
        im = struct.unpack_from('>1B',buf,index)
        index += struct.calcsize('>1B')
        labels.append(im[0])
    arrY = np.array(labels)
    print(np.shape(arrY))
    
    # print(np.shape(trainX))
    #以下内容是将图像保存到本地文件中
    path_trainset = "data_AI/MNIST/imgs_train"
    path_testset = "data_AI/MNIST/imgs_test"
    if not os.path.exists(path_trainset):
       os.mkdir(path_trainset)
    if not os.path.exists(path_testset):
       os.mkdir(path_testset)
    for i in range(1):
        img = np.array(arrX[i])
        print(img)
        img = img.reshape(28,28)
        outfile = str(i) + "_" +  str(arrY[i]) + ".png"
        # outfile = str(i)+".png"
        plt.figure()
        plt.imshow(img, cmap = 'binary') #将图像黑白显示
        plt.savefig(path_trainset + "/" + outfile)
        print("save"+str(i)+"")
  • 相关阅读:
    企业面试题库1
    就业模拟试题_Net
    就业模拟试题_Java
    oracle创建用户
    Activity基础类
    Activity容器控件
    面试题_Java
    Activity功能控件
    获取工作流活动的返回值
    企业面试题库_数据库部分
  • 原文地址:https://www.cnblogs.com/ncuhwxiong/p/9726936.html
Copyright © 2020-2023  润新知