• 关于感兴趣区域提取


    八领域搜索,水平集分割,分水岭分割,

    首先是水平集方法,效果并不好

    clear all;
    close all;
    Img = imread('index_1.bmp');  % The same cell image in the paper is used here
    Img=double(Img(:,:,1));
    sigma=1.5;    % scale parameter in Gaussian kernel for smoothing.
    G=fspecial('gaussian',15,sigma);
    Img_smooth=conv2(Img,G,'same');  % smooth image by Gaussiin convolution
    [Ix,Iy]=gradient(Img_smooth);
    f=Ix.^2+Iy.^2;
    g=1./(1+f);  % edge indicator function.
    
    epsilon=1.5; % the papramater in the definition of smoothed Dirac function
    
    timestep=5;  % time step
    mu=0.2/timestep;  % coefficient of the internal (penalizing) energy term P(phi)
              % Note: the product timestep*mu must be less than 0.25 for stability!
    
    lambda=5; % coefficient of the weighted length term Lg(phi)
    alf=1.5;  % coefficient of the weighted area term Ag(phi);
              % Note: Choose a positive(negative) alf if the initial contour is outside(inside) the object.
    
    
    % define initial level set function (LSF) as -c0, 0, c0 at points outside, on
    % the boundary, and inside of a region R, respectively.
    [nrow, ncol]=size(Img);  
    c0=4;   
    initialLSF=c0*ones(nrow,ncol);
    w=8;
    initialLSF(w+1:end-w, w+1:end-w)=0;  % zero level set is on the boundary of R. 
                                         % Note: this can be commented out. The intial LSF does NOT necessarily need a zero level set.
                                         
    initialLSF(w+2:end-w-1, w+2: end-w-1)=-c0; % negative constant -c0 inside of R, postive constant c0 outside of R.
    u=initialLSF;
    figure;imagesc(Img);colormap(gray);hold on;
    [c,h] = contour(u,[0 0],'r');                          
    title('Initial contour');
    
    % start level set evolution
    for n=1:300
        u=EVOLUTION(u, g ,lambda, mu, alf, epsilon, timestep, 1);     
        if mod(n,20)==0
            pause(0.001);
            imagesc(Img);colormap(gray);hold on;
            [c,h] = contour(u,[0 0],'r'); 
            iterNum=[num2str(n), ' iterations'];        
            title(iterNum);
            hold off;
        end
    end
    imagesc(Img);colormap(gray);hold on;
    [c,h] = contour(u,[0 0],'r'); 
    totalIterNum=[num2str(n), ' iterations'];  
    title(['Final contour, ', totalIterNum]);
    

      

    function u = EVOLUTION(u0, g, lambda, mu, alf, epsilon, delt, numIter)
    %  EVOLUTION(u0, g, lambda, mu, alf, epsilon, delt, numIter) updates the level set function 
    %  according to the level set evolution equation in Chunming Li et al's paper: 
    %      "Level Set Evolution Without Reinitialization: A New Variational Formulation"
    %       in Proceedings CVPR'2005, 
    %  Usage:
    %   u0: level set function to be updated
    %   g: edge indicator function
    %   lambda: coefficient of the weighted length term L(phi)
    %   mu: coefficient of the internal (penalizing) energy term P(phi)
    %   alf: coefficient of the weighted area term A(phi), choose smaller alf 
    %   epsilon: the papramater in the definition of smooth Dirac function, default value 1.5
    %   delt: time step of iteration, see the paper for the selection of time step and mu 
    %   numIter: number of iterations. 
    %
    
    
    u=u0;
    [vx,vy]=gradient(g);
    
    for k=1:numIter
        u=NeumannBoundCond(u);
        [ux,uy]=gradient(u); 
        normDu=sqrt(ux.^2 + uy.^2 + 1e-10);
        Nx=ux./normDu;
        Ny=uy./normDu;
        diracU=Dirac(u,epsilon);
        K=curvature_central(Nx,Ny);
        weightedLengthTerm=lambda*diracU.*(vx.*Nx + vy.*Ny + g.*K);
        penalizingTerm=mu*(4*del2(u)-K);
        weightedAreaTerm=alf.*diracU.*g;
        u=u+delt*(weightedLengthTerm + weightedAreaTerm + penalizingTerm);  % update the level set function
    end
    
    % the following functions are called by the main function EVOLUTION
    function f = Dirac(x, sigma)   %水平集狄拉克计算
    f=(1/2/sigma)*(1+cos(pi*x/sigma));
    b = (x<=sigma) & (x>=-sigma);
    f = f.*b;
    
    function K = curvature_central(nx,ny);  %曲率中心
    [nxx,junk]=gradient(nx);  
    [junk,nyy]=gradient(ny);
    K=nxx+nyy;
    
    function g = NeumannBoundCond(f)
    % Make a function satisfy Neumann boundary condition
    [nrow,ncol] = size(f);
    g = f;
    g([1 nrow],[1 ncol]) = g([3 nrow-2],[3 ncol-2]);  
    g([1 nrow],2:end-1) = g([3 nrow-2],2:end-1);          
    g(2:end-1,[1 ncol]) = g(2:end-1,[3 ncol-2]);
    

      %%下面是八领域搜索算法代码,没搞明白怎么回事,先贴上来吧。。、、

    clear all;
    close all;
    clc;
    %外边界
    img=imread('rice.png');
    img=img>128;
    imshow(img);
    [m n]=size(img);
    
    imgn=zeros(m,n);        %边界标记图像
    ed=[-1 -1;0 -1;1 -1;1 0;1 1;0 1;-1 1;-1 0]; %从左上角像素判断
    for i=2:m-1
        for j=2:n-1
            if img(i,j)==1      %如果当前像素是前景像素
                
                for k=1:8
                    ii=i+ed(k,1);
                    jj=j+ed(k,2);
                    if img(ii,jj)==0    %当前像素周围如果是背景,边界标记图像相应像素标记
                        imgn(ii,jj)=1;
                    end
                end
                
            end
        end
    end
        
    figure;
    imshow(imgn,[]);
    
    %不过要是真取二值图像外边界,通常是原图膨胀图减去原图就行了
    se = strel('square',3); 
    imgn=imdilate(img,se)-img;    
    figure;
    imshow(imgn)
    

      

  • 相关阅读:
    .Net/C# 应用程序直接读取本地 Cookies 文件(WinXP SP2 调用 API: InternetGetCookie 无果)
    wininet.dll函数库:不会过期的cookie
    WinForm中TextBox控件循环自动滚动示例
    JScript中Date.getTime转.Net中的DateTime
    js gettime c# ticks
    mysql查看整库个表详情
    rds分区实践
    mysql5.7.21源码安装
    EXPLAIN详解
    C#基础温习(4):C#中string数组和list的相互转换
  • 原文地址:https://www.cnblogs.com/natalie/p/5631100.html
Copyright © 2020-2023  润新知