解决一个机器学习问题的一般套路是先构建一个目标函数,然后解决一个优化问题。目标函数通常由损失函数和正则项组成。常见的损失函数log-loss,square-loss,cross-entropy-loss等,常见的正则化方法有L1正则、L2正则等,常见的优化方法有梯度下降、随机梯度下降等。SVM也可以按照这种模式来重新定义。
首先,损失函数
( l(y_i,y_i') = max(0,1-y_iy_i') ),称之为hinge-loss. 实际值y的取值为-1和1,容易看出,只要实际值和预测值不同,损失函数就会大于0,当实际值和预测值相同的时候,预测值的绝对值越大越好
然后,构建目标函数
obj(w,b) = (sum_{i=1}^{N}max(0,1-y_i(w dot x_i+b)) + c||w||^2)
可以证明
上述目标函数和上篇文章中得到的优化目标
(min_{w,b}frac{1}{2}||w||^2+Csum_{i=1}^{N}xi_i)
s.t (y_i(wcdot x_i+b)>=1-xi_i, i=1,2,...N)
(xi_i>=0,i=1,2,3...N)
等价
参考:李航《统计学习方法》