• Kubernetes-第三节 Controller和Network


    01 Controllers

    官网https://kubernetes.io/docs/concepts/workloads/controllers/

    ReplicationController(RC)

    官网https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/

    A ReplicationController ensures that a specified number of pod replicas are running at any one time. In other words, a ReplicationController makes sure that a pod or a homogeneous set of pods is always up and available.
    

    ReplicationController定义了一个期望的场景,即声明某种Pod的副本数量在任意时刻都符合某个预期值,所以RC的定义包含以下几个部分:

    • Pod期待的副本数(replicas)
    • 用于筛选目标Pod的Label Selector
    • 当Pod的副本数量小于预期数量时,用于创建新Pod的Pod模板(template)

    也就是说通过RC实现了集群中Pod的高可用,减少了传统IT环境中手工运维的工作。

    Have a try

    kind:表示要新建对象的类型

    spec.selector:表示需要管理的Pod的label,这里表示包含app: nginx的label的Pod都会被该RC管理

    spec.replicas:表示受此RC管理的Pod需要运行的副本数

    spec.template:表示用于定义Pod的模板,比如Pod名称、拥有的label以及Pod中运行的应用等

    通过改变RC里Pod模板中的镜像版本,可以实现Pod的升级功能

    kubectl apply -f nginx-pod.yaml,此时k8s会在所有可用的Node上,创建3个Pod,并且每个Pod都有一个app: nginx的label,同时每个Pod中都运行了一个nginx容器。

    如果某个Pod发生问题,Controller Manager能够及时发现,然后根据RC的定义,创建一个新的Pod

    扩缩容:kubectl scale rc nginx --replicas=5

    (1)创建名为nginx_replication.yaml

    apiVersion: v1
    kind: ReplicationController
    metadata:
      name: nginx
    spec:
      replicas: 3
      selector:
        app: nginx
      template:
        metadata:
          name: nginx
          labels:
            app: nginx
        spec:
          containers:
          - name: nginx
            image: nginx
            ports:
            - containerPort: 80
    

    (2)根据nginx_replication.yaml创建pod

    kubectl apply -f nginx_replication.yaml
    

    (3)查看pod

    kubectl get pods -o wide
    
       NAME      READY     STATUS
    nginx-hksg8   1/1     Running   0          44s   192.168.80.195   w2   
    nginx-q7bw5   1/1     Running   0          44s   192.168.190.67   w1  
    nginx-zzwzl   1/1     Running   0          44s   192.168.190.68   w1    
    
    kubectl get rc
    NAME    DESIRED   CURRENT   READY   AGE
    nginx   3         3         3       2m54s
    

    (4)尝试删除一个pod

    kubectl delete pods nginx-zzwzl
    kubectl get pods
    

    (5)对pod进行扩缩容

    kubectl scale rc nginx --replicas=5
    kubectl get pods
    nginx-8fctt   0/1     ContainerCreating   0          2s
    nginx-9pgwk   0/1     ContainerCreating   0          2s
    nginx-hksg8   1/1     Running             0          6m50s
    nginx-q7bw5   1/1     Running             0          6m50s
    nginx-wzqkf   1/1     Running             0          99s
    

    (6)删除pod

    kubectl delete -f nginx_replication.yaml
    

    ReplicaSet(RS)

    官网https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

    A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any given time. As such, it is often used to guarantee the availability of a specified number of identical Pods.
    

    在Kubernetes v1.2时,RC就升级成了另外一个概念:Replica Set,官方解释为“下一代RC”

    ReplicaSet和RC没有本质的区别,kubectl中绝大部分作用于RC的命令同样适用于RS

    RS与RC唯一的区别是:RS支持基于集合的Label Selector(Set-based selector),而RC只支持基于等式的Label Selector(equality-based selector),这使得Replica Set的功能更强

    Have a try

    apiVersion: extensions/v1beta1
    kind: ReplicaSet
    metadata:
      name: frontend
    spec:
      matchLabels: 
        tier: frontend
      matchExpressions: 
        - {key:tier,operator: In,values: [frontend]}
      template:
      ...
    

    注意:一般情况下,我们很少单独使用Replica Set,它主要是被Deployment这个更高的资源对象所使用,从而形成一整套Pod创建、删除、更新的编排机制。当我们使用Deployment时,无须关心它是如何创建和维护Replica Set的,这一切都是自动发生的。同时,无需担心跟其他机制的不兼容问题(比如ReplicaSet不支持rolling-update但Deployment支持)。

    Deployment

    官网https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

    A Deployment provides declarative updates for Pods and ReplicaSets.
    
    You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.
    

    Deployment相对RC最大的一个升级就是我们可以随时知道当前Pod“部署”的进度。

    创建一个Deployment对象来生成对应的Replica Set并完成Pod副本的创建过程

    检查Deploymnet的状态来看部署动作是否完成(Pod副本的数量是否达到预期的值)

    (1)创建nginx_deployment.yaml文件

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: nginx-deployment
      labels:
        app: nginx
    spec:
      replicas: 3
      selector:
        matchLabels:
          app: nginx
      template:
        metadata:
          labels:
            app: nginx
        spec:
          containers:
          - name: nginx
            image: nginx:1.7.9
            ports:
            - containerPort: 80
    

    (2)根据nginx_deployment.yaml文件创建pod

    kubectl apply -f nginx_deployment.yaml
    

    (3)查看pod

    kubectl get pods -o wide

    kubectl get deployment

    kubectl get rs

    kubectl get deployment -o wide

    nginx-deployment-6dd86d77d-f7dxb   1/1     Running   0      22s   192.168.80.198   w2 
    nginx-deployment-6dd86d77d-npqxj   1/1     Running   0      22s   192.168.190.71   w1 
    nginx-deployment-6dd86d77d-swt25   1/1     Running   0      22s   192.168.190.70   w1
    

    nginx-deployment[deployment]-6dd86d77d[replicaset]-f7dxb[pod]

    (4)当前nginx的版本

    kubectl get deployment -o wide
    
    NAME    READY   UP-TO-DATE   AVAILABLE   AGE     CONTAINERS   IMAGES      SELECTOR
    nginx-deployment   3/3         3     3  3m27s      nginx    nginx:1.7.9   app=nginx
    

    (5)更新nginx的image版本

    kubectl set image deployment nginx-deployment nginx=nginx:1.9.1
    

    02 Labels and Selectors

    在前面的yaml文件中,看到很多label,顾名思义,就是给一些资源打上标签的

    官网https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

    Labels are key/value pairs that are attached to objects, such as pods. 
    
    apiVersion: v1
    kind: Pod
    metadata:
      name: nginx-pod
      labels:
        app: nginx
    

    表示名称为nginx-pod的pod,有一个label,key为app,value为nginx。

    我们可以将具有同一个label的pod,交给selector管理

    apiVersion: apps/v1
    kind: Deployment
    metadata: 
      name: nginx-deployment
      labels:
        app: nginx
    spec:
      replicas: 3
      selector:             # 匹配具有同一个label属性的pod标签
        matchLabels:
          app: nginx         
      template:             # 定义pod的模板
        metadata:
          labels:
            app: nginx      # 定义当前pod的label属性,app为key,value为nginx
        spec:
          containers:
          - name: nginx
            image: nginx:1.7.9
            ports:
            - containerPort: 80
    

    查看pod的label标签:kubectl get pods --show-labels

    这里可以尝试一下selector匹配不上的结果

    03 Namespace

    kubectl get pods

    kubectl get pods -n kube-system

    比较一下,上述两行命令的输入是否一样,发现不一样,是因为Pod属于不同的Namespace。

    查看一下当前的命名空间:kubectl get namespaces/ns

    NAME              STATUS   AGE
    default           Active   27m
    kube-node-lease   Active   27m
    kube-public       Active   27m
    kube-system       Active   27m
    

    其实说白了,命名空间就是为了隔离不同的资源,比如:Pod、Service、Deployment等。可以在输入命令的时候指定命名空间-n,如果不指定,则使用默认的命名空间:default。

    创建命名空间

    myns-namespace.yaml

    apiVersion: v1
    kind: Namespace
    metadata:
      name: myns
    

    kubectl apply -f myns-namespace.yaml

    kubectl get namespaces/ns

    NAME              STATUS   AGE
    default           Active   38m
    kube-node-lease   Active   38m
    kube-public       Active   38m
    kube-system       Active   38m
    myns              Active   6s
    

    指定命名空间下的资源

    比如创建一个pod,属于myns命名空间下

    vi nginx-pod.yaml

    kubectl apply -f nginx-pod.yaml

    apiVersion: v1
    kind: Pod
    metadata:
      name: nginx-pod
      namespace: myns
    spec:
      containers:
      - name: nginx-container
        image: nginx
        ports:
        - containerPort: 80
    

    查看myns命名空间下的Pod和资源

    kubectl get pods

    kubectl get pods -n myns

    kubectl get all -n myns

    kubectl get pods --all-namespaces #查找所有命名空间下的pod

    04 Network

    4.1 同一个Pod中的容器通信

    接下来就要说到跟Kubernetes网络通信相关的内容咯

    我们都知道K8S最小的操作单位是Pod,先思考一下同一个Pod中多个容器要进行通信

    由官网的这段话可以看出,同一个pod中的容器是共享网络ip地址和端口号的,通信显然没问题

    Each Pod is assigned a unique IP address. Every container in a Pod shares the network namespace, including the IP address and network ports. 
    

    那如果是通过容器的名称进行通信呢?就需要将所有pod中的容器加入到同一个容器的网络中,我们把该容器称作为pod中的pause container。

    4.2 集群内Pod之间的通信

    接下来就聊聊K8S最小的操作单元,Pod之间的通信

    我们都之间Pod会有独立的IP地址,这个IP地址是被Pod中所有的Container共享的

    那多个Pod之间的通信能通过这个IP地址吗?

    我认为需要分两个维度:一是集群中同一台机器中的Pod,二是集群中不同机器中的Pod

    准备两个pod,一个nginx,一个busybox

    nginx_pod.yaml

    apiVersion: v1
    kind: Pod
    metadata:
      name: nginx-pod
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx-container
        image: nginx
        ports:
        - containerPort: 80
    

    busybox_pod.yaml

    apiVersion: v1
    kind: Pod
    metadata:
     name: busybox
     labels:
        app: busybox
    spec:
     containers:
      - name: busybox
        image: busybox
        command: ['sh', '-c', 'echo The app is running! && sleep 3600']
    

    将两个pod运行起来,并且查看运行情况

    kubectl apply -f nginx_pod.yaml

    kubectl apply -f busy_pod.yaml

    kubectl get pods -o wide

    NAME      READY  STATUS    RESTARTS   AGE         IP                NODE  
    busybox    1/1   Running      0       49s    192.168.221.70   worker02-kubeadm-k8s   
    nginx-pod  1/1   Running      0      7m46s   192.168.14.1     worker01-kubeadm-k8s 
    

    发现:nginx-pod的ip为192.168.14.1 busybox-pod的ip为192.168.221.70

    同一个集群中同一台机器

    (1)来到worker01:ping 192.168.14.1

    PING 192.168.14.1 (192.168.14.1) 56(84) bytes of data.
    64 bytes from 192.168.14.1: icmp_seq=1 ttl=64 time=0.063 ms
    64 bytes from 192.168.14.1: icmp_seq=2 ttl=64 time=0.048 ms
    

    (2)来到worker01:curl 192.168.14.1

    <!DOCTYPE html>
    <html>
    <head>
    <title>Welcome to nginx!</title>
    <style>
        body {
             35em;
            margin: 0 auto;
            font-family: Tahoma, Verdana, Arial, sans-serif;
        }
    </style>
    

    同一个集群中不同机器

    (1)来到worker02:ping 192.168.14.1

    [root@worker02-kubeadm-k8s ~]# ping 192.168.14.1
    PING 192.168.14.1 (192.168.14.1) 56(84) bytes of data.
    64 bytes from 192.168.14.1: icmp_seq=1 ttl=63 time=0.680 ms
    64 bytes from 192.168.14.1: icmp_seq=2 ttl=63 time=0.306 ms
    64 bytes from 192.168.14.1: icmp_seq=3 ttl=63 time=0.688 ms
    

    (2)来到worker02:curl 192.168.14.1,同样可以访问nginx

    (3)来到master:

    ping/curl 192.168.14.1 访问的是worker01上的nginx-pod

    ping 192.168.221.70 访问的是worker02上的busybox-pod

    (4)来到worker01:ping 192.168.221.70 访问的是worker02上的busybox-pod

    How to implement the Kubernetes Cluster networking model--Calico

    官网https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model

    • pods on a node can communicate with all pods on all nodes without NAT
    • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
    • pods in the host network of a node can communicate with all pods on all nodes without NAT

    4.3 集群内Service-Cluster IP

    对于上述的Pod虽然实现了集群内部互相通信,但是Pod是不稳定的,比如通过Deployment管理Pod,随时可能对Pod进行扩缩容,这时候Pod的IP地址是变化的。能够有一个固定的IP,使得集群内能够访问。也就是之前在架构描述的时候所提到的,能够把相同或者具有关联的Pod,打上Label,组成Service。而Service有固定的IP,不管Pod怎么创建和销毁,都可以通过Service的IP进行访问

    Service官网https://kubernetes.io/docs/concepts/services-networking/service/

    An abstract way to expose an application running on a set of Pods as a network service.
    With Kubernetes you don’t need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods, and can load-balance across them.
    

    (1)创建whoami-deployment.yaml文件,并且apply

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: whoami-deployment
      labels:
        app: whoami
    spec:
      replicas: 3
      selector:
        matchLabels:
          app: whoami
      template:
        metadata:
          labels:
            app: whoami
        spec:
          containers:
          - name: whoami
            image: jwilder/whoami
            ports:
            - containerPort: 8000
    

    (2)查看pod以及service

    whoami-deployment-5dd9ff5fd8-22k9n   192.168.221.80   worker02-kubeadm-k8s
    whoami-deployment-5dd9ff5fd8-vbwzp   192.168.14.6     worker01-kubeadm-k8s
    whoami-deployment-5dd9ff5fd8-zzf4d   192.168.14.7     worker01-kubeadm-k8s
    

    kubect get svc:可以发现目前并没有关于whoami的service

    NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
    kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   19h
    

    (3)在集群内正常访问

    curl 192.168.221.80:8000/192.168.14.6:8000/192.168.14.7:8000
    

    (4)创建whoami的service

    注意:该地址只能在集群内部访问

    kubectl expose deployment whoami-deployment
    kubectl get svc    
    删除svc   kubectl delete service whoami-deployment
    
    [root@master-kubeadm-k8s ~]# kubectl get svc
    NAME                TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
    kubernetes          ClusterIP   10.96.0.1        <none>        443/TCP    19h
    whoami-deployment   ClusterIP   10.105.147.59   <none>        8000/TCP   23s
    

    可以发现有一个Cluster IP类型的service,名称为whoami-deployment,IP地址为10.101.201.192

    (5)通过Service的Cluster IP访问

    [root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
    I'm whoami-deployment-678b64444d-b2695
    [root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
    I'm whoami-deployment-678b64444d-hgdrk
    [root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
    I'm whoami-deployment-678b64444d-65t88
    

    (6)具体查看一下whoami-deployment的详情信息,发现有一个Endpoints连接了具体3个Pod

    [root@master-kubeadm-k8s ~]# kubectl describe svc whoami-deployment
    Name:              whoami-deployment
    Namespace:         default
    Labels:            app=whoami
    Annotations:       <none>
    Selector:          app=whoami
    Type:              ClusterIP
    IP:                10.105.147.59
    Port:              <unset>  8000/TCP
    TargetPort:        8000/TCP
    Endpoints:         192.168.14.8:8000,192.168.221.81:8000,192.168.221.82:8000
    Session Affinity:  None
    Events:            <none>
    

    (7)不妨对whoami扩容成5个

    kubectl scale deployment whoami-deployment --replicas=5
    

    (8)再次访问:curl 10.105.147.59:8000

    (9)再次查看service具体信息:kubectl describe svc whoami-deployment

    (10)其实对于Service的创建,不仅仅可以使用kubectl expose,也可以定义一个yaml文件

    apiVersion: v1
    kind: Service
    metadata:
      name: my-service
    spec:
      selector:
        app: MyApp
      ports:
        - protocol: TCP
          port: 80
          targetPort: 9376
      type: Cluster
    

    conclusion:其实Service存在的意义就是为了Pod的不稳定性,而上述探讨的就是关于Service的一种类型Cluster IP,只能供集群内访问

    以Pod为中心,已经讨论了关于集群内的通信方式,接下来就是探讨集群中的Pod访问外部服务,以及外部服务访问集群中的Pod

    4.4 Pod访问外部服务

    比较简单,没太多好说的内容,直接访问即可

    4.5 外部服务访问集群中的Pod

    Service-NodePort

    也是Service的一种类型,可以通过NodePort的方式

    说白了,因为外部能够访问到集群的物理机器IP,所以就是在集群中每台物理机器上暴露一个相同的IP,比如32008

    (1)根据whoami-deployment.yaml创建pod

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: whoami-deployment
      labels:
        app: whoami
    spec:
      replicas: 3
      selector:
        matchLabels:
          app: whoami
      template:
        metadata:
          labels:
            app: whoami
        spec:
          containers:
          - name: whoami
            image: jwilder/whoami
            ports:
            - containerPort: 8000
    

    (2)创建NodePort类型的service,名称为whoami-deployment

    kubectl delete svc whoami-deployment
    
    kubectl expose deployment whoami-deployment --type=NodePort
    
    [root@master-kubeadm-k8s ~]# kubectl get svc
    NAME                TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
    kubernetes          ClusterIP   10.96.0.1      <none>        443/TCP          21h
    whoami-deployment   NodePort    10.99.108.82   <none>        8000:32041/TCP   7s
    

    (3)注意上述的端口32041,实际上就是暴露在集群中物理机器上的端口

    lsof -i tcp:32041
    netstat -ntlp|grep 32041
    

    (4)浏览器通过物理机器的IP访问

    http://192.168.0.51:32041
    curl 192.168.0.61:32041
    

    conclusion:NodePort虽然能够实现外部访问Pod的需求,但是真的好吗?其实不好,占用了各个物理主机上的端口

    Service-LoadBalance

    通常需要第三方云提供商支持,有约束性

    Ingress

    官网https://kubernetes.io/docs/concepts/services-networking/ingress/

    An API object that manages external access to the services in a cluster, typically HTTP.
    
    Ingress can provide load balancing, SSL termination and name-based virtual hosting.
    

    可以发现,Ingress就是帮助我们访问集群内的服务的。不过在看Ingress之前,我们还是先以一个案例出发。

    很简单,在K8S集群中部署tomcat

    浏览器想要访问这个tomcat,也就是外部要访问该tomcat,用之前的Service-NodePort的方式是可以的,比如暴露一个32008端口,只需要访问192.168.0.61:32008即可。

    vi my-tomcat.yaml

    kubectl apply -f my-tomcat.yaml

    kubectl get pods

    kubectl get deployment

    kubectl get svc

    tomcat-service NodePort 10.105.51.97 <none> 80:31032/TCP 37s

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: tomcat-deployment
      labels:
        app: tomcat
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: tomcat
      template:
        metadata:
          labels:
            app: tomcat
        spec:
          containers:
          - name: tomcat
            image: tomcat
            ports:
            - containerPort: 8080
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: tomcat-service
    spec:
      ports:
      - port: 80   
        protocol: TCP
        targetPort: 8080
      selector:
        app: tomcat
      type: NodePort  
    

    显然,Service-NodePort的方式生产环境不推荐使用,那接下来就基于上述需求,使用Ingress实现访问tomcat的需求。

    官网Ingress:https://kubernetes.io/docs/concepts/services-networking/ingress/

    GitHub Ingress Nginx:https://github.com/kubernetes/ingress-nginx

    Nginx Ingress Controller:<https://kubernetes.github.io/ingress-nginx/

    (1)以Deployment方式创建Pod,该Pod为Ingress Nginx Controller,要想让外界访问,可以通过Service的NodePort或者HostPort方式,这里选择HostPort,比如指定worker01运行

    # 确保nginx-controller运行到w1节点上
    kubectl label node w1 name=ingress   
    
    # 使用HostPort方式运行,需要增加配置
    hostNetwork: true
    
    # 搜索nodeSelector,并且要确保w1节点上的80和443端口没有被占用,镜像拉取需要较长的时间,这块注意一下哦
    # mandatory.yaml在网盘中的“课堂源码”目录
    kubectl apply -f mandatory.yaml  
    
    kubectl get all -n ingress-nginx
    

    (2)查看w1的80和443端口

    lsof -i tcp:80
    lsof -i tcp:443
    

    (3)创建tomcat的pod和service

    记得将之前的tomcat删除:kubectl delete -f my-tomcat.yaml

    vi tomcat.yaml

    kubectl apply -f tomcat.yaml

    kubectl get svc

    kubectl get pods

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: tomcat-deployment
      labels:
        app: tomcat
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: tomcat
      template:
        metadata:
          labels:
            app: tomcat
        spec:
          containers:
          - name: tomcat
            image: tomcat
            ports:
            - containerPort: 8080
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: tomcat-service
    spec:
      ports:
      - port: 80   
        protocol: TCP
        targetPort: 8080
      selector:
        app: tomcat
    

    (4)创建Ingress以及定义转发规则

    kubectl apply -f nginx-ingress.yaml

    kubectl get ingress

    kubectl describe ingress nginx-ingress

    #ingress
    apiVersion: extensions/v1beta1
    kind: Ingress
    metadata:
      name: nginx-ingress
    spec:
      rules:
      - host: tomcat.jack.com
        http:
          paths:
          - path: /
            backend:
              serviceName: tomcat-service
              servicePort: 80
    

    (5)修改win的hosts文件,添加dns解析

    192.168.8.61 tomcat.jack.com
    

    (6)打开浏览器,访问tomcat.jack.com

    总结:如果以后想要使用Ingress网络,其实只要定义ingress,service和pod即可,前提是要保证nginx ingress controller已经配置好了。

  • 相关阅读:
    NOIP模拟测试7
    BigInt类
    bzoj 2733 [HNOI2012]永无乡 并查集+平衡树
    bzoj 2752 [HAOI2012]高速公路(road) 线段树
    bzoj 1584 Cleaning Up 打扫卫生 dp
    201709 半集训
    [SHOI2014]概率充电器 dp
    NOIP2016 天天爱跑步
    [HNOI2011] 数学作业
    [Poi2012]Festival
  • 原文地址:https://www.cnblogs.com/nangonghui/p/11997733.html
Copyright © 2020-2023  润新知