题解 (by;zjvarphi)
考虑如何才能最优。
每次一定把当前最小值移动到边界上,那么看它向左还是向右移更优。
用树状数组维护一下即可,复杂度 (mathcal O m (nlogn))
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e5+7;
int *a[N],vis[N],num[N],l[N],r[N],mx,n;
ll ans;
struct BIT{
#define lowbit(x) ((x)&-(x))
int c[N];
inline void update(int x,int k) {for (ri i(x);i<=n;i+=lowbit(i)) c[i]+=k;}
inline int query(int x) {
int res(0);
for (ri i(x);i;i-=lowbit(i)) res+=c[i];
return res;
}
}B;
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n;
for (ri i(1);i<=n;p(i)) cin >> num[i],p(vis[num[i]]),mx=cmax(mx,num[i]);
for (ri i(1);i<=mx;p(i)) {
if (!vis[i]) continue;
a[i]=new int[vis[i]+1];
l[i]=1;
}
for (ri i(1);i<=n;p(i)) a[num[i]][p(r[num[i]])]=i,B.update(i,1);
for (ri i(1);i<=mx;p(i)) {
if (!vis[i]) continue;
while(l[i]<=r[i]) {
int x1=a[i][l[i]],x2=a[i][r[i]];
int d1=B.query(x1-1),d2=B.query(n)-B.query(x2);
if (d1<d2) {
ans+=d1;
B.update(x1,-1);
p(l[i]);
} else {
ans+=d2;
B.update(x2,-1);
--r[i];
}
//printf("ans=%lld
",ans);
}
}
printf("%lld
",ans);
return 0;
}
}
int main() {return nanfeng::main();}