• NOIP 模拟 $30; m 毛二琛$


    题解 (by;zjvarphi)

    原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案。

    (dp_{i,j}) 表示在前 (i) 个数中,第 (i) 个的排名为 (j)的方案数

    方程:

    [f_{i,j}=egin{cases} sumlimits_{k=j}^{i-1} f_{i-1,k},(p_{i-1}<p_i)\ sumlimits_{k=1}^{j-1} f_{i-1,k},(p_{i-1}>p_i)\ end{cases} ]

    直接前缀和优化即可 (mathcal O m(n^2))

    Code
    #include<bits/stdc++.h>
    #define ri register signed
    #define p(i) ++i
    namespace IO{
        char buf[1<<21],*p1=buf,*p2=buf;
        #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
        struct nanfeng_stream{
            template<typename T>inline nanfeng_stream &operator>>(T &x) {
                ri f=1;x=0;register char ch=gc();
                while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
                while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
                return x=f?x:-x,*this;
            }
        }cin;
    }
    using IO::cin;
    namespace nanfeng{
        #define FI FILE *IN
        #define FO FILE *OUT
        template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
        template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
        static const int N=5e3+7,MOD=1e9+7;
        int dp[N][N],g[N][N],a[N],n,ans;
        bool mv[N];
        inline int main() {
            //FI=freopen("nanfeng.in","r",stdin);
            //FO=freopen("nanfeng.out","w",stdout);
            cin >> n;
            for (ri i(0);i<n;p(i)) cin >> a[i];
            for (ri i(0);i<n;p(i)) 
                if (i<a[i]) {
                    if (i) mv[i-1]=1;
                    mv[a[i]-1]=1;
                } else for (ri j(a[i]);j<i-1;p(j)) mv[j]=1;
            dp[0][1]=g[0][1]=1;
            for (ri i(1);i<n-1;p(i)) {
                for (ri j(1);j<=i+1;p(j)) {
                    if (mv[i-1]) dp[i][j]=(dp[i][j]+g[i-1][i]-g[i-1][j-1]+MOD)%MOD;       
                    else dp[i][j]=(dp[i][j]+g[i-1][j-1])%MOD;
                    g[i][j]=(g[i][j-1]+dp[i][j])%MOD;
                }
            }
            for (ri i(1);i<n;p(i)) ans=(ans+dp[n-2][i])%MOD;
            printf("%d
    ",ans);
            return 0;
        }
    }
    int main() {return nanfeng::main();}
    
  • 相关阅读:
    poj 3744 Scout YYF I (矩阵快速幂 优化 概率dp)
    Codeforces Round #272 (Div. 2) D. Dreamoon and Sets (思维 数学 规律)
    Codeforces Round #272 (Div. 2) C. Dreamoon and Sums (数学 思维)
    hdu 5067 Harry And Dig Machine (状态压缩dp)
    hdu 4810 Wall Painting (组合数学+二进制)
    hdu 4856 Tunnels (bfs + 状压dp)
    tc srm 636 div2 500
    poj 2096 Collecting Bugs (概率dp 天数期望)
    ABC182 F Valid payments
    AT2699 [ARC081D] Flip and Rectangles
  • 原文地址:https://www.cnblogs.com/nanfeng-blog/p/15110435.html
Copyright © 2020-2023  润新知