题解 (by;zjvarphi)
如何判断一个集合可以被拆成两个相等的部分?
枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 (mathcal O m(3^n))
( m;meet;in;the;middle) 优化,将序列分成两段,枚举第一段的每个数加到哪个集合,用 ( m hash) 表存一下。
在后半部分扫完后,再扫前面的每个集合,得到答案。
复杂度 (mathcal O m (3^frac{n}{2}+6^frac{n}{2}))
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=25;
int a[N],hl,al,ans,n;
bool vs[N],vis[1<<10][1<<10];
struct Hash{
static const int MOD=1e8+7;
int first[MOD],t=1;
struct edge{int w,st,nxt;}e[(int)6e5];
inline int MD(int x) {return x>=MOD?x-MOD:x;}
inline void insert(int x,int st) {
int hd=MD(x%MOD+MOD);
for (ri i(first[hd]);i;i=e[i].nxt) if (e[i].st==st&&e[i].w==x) return;
e[t].w=x,e[t].st=st,e[t].nxt=first[hd],first[hd]=t++;
}
inline int query(int x,int st) {
int hd=MD(x%MOD+MOD),res(0);
for (ri i(first[hd]);i;i=e[i].nxt) {
if (e[i].w!=x||vis[e[i].st][st]) continue;
vis[e[i].st][st]=1;
p(res);
}
return res;
}
}H;
void dfs1(int x,int w) {
if (x==hl+1) {
ri st(vs[1]);
for (ri i(2);i<=hl;p(i)) st=st<<1|vs[i];
H.insert(w,st);
return;
}
vs[x]=0;
dfs1(x+1,w);
vs[x]=1;
dfs1(x+1,w+a[x]);
dfs1(x+1,w-a[x]);
}
void dfs2(int x,int w) {
if (x==n+1) {
ri st(0);
for (ri i(hl+1);i<=n;p(i)) st=st<<1|vs[i];
ans+=H.query(w,st);
return;
}
vs[x]=0;
dfs2(x+1,w);
vs[x]=1;
dfs2(x+1,w+a[x]);
dfs2(x+1,w-a[x]);
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n;
for (ri i(1);i<=n;p(i)) cin >> a[i];
hl=n>>1;
al=n-hl;
dfs1(1,0);
dfs2(hl+1,0);
printf("%d
",ans-1);
return 0;
}
}
int main() {return nanfeng::main();}