题解
这里的做法是卡空间的做法,相比于滚动数组,这种做法因为没有三维数组寻址的大常数,所以较快。
在普通的做法中,(dp[state][i]) 表示以 (i) 结尾,那么 (state) 一定是包含 (i) 的状态,所以在 (state) 中可以省掉 (i) 这一位
所以 (cost=(k+1)×2^{k-1}×4kb) ,大约为 (42MB)
注:本题用 (spfa) 会比 (dijkstra) 快很多
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define node(x,y) (node){x,y}
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=2e4+7,M=2e5+7;
int first[N],dp[1<<19][21],pre[21],dis[21][N],vis[N],n,m,q,k,t=2,S;
struct edge{int v,w,nxt;}e[M<<1];
struct node{int x,dis;};
priority_queue<node> que;
inline int operator<(const node &n1,const node &n2) {return n1.dis>n2.dis;}
inline void add(int u,int v,int w) {
e[t].v=v,e[t].w=w,e[t].nxt=first[u],first[u]=t++;
e[t].v=u,e[t].w=w,e[t].nxt=first[v],first[v]=t++;
}
inline void dij(int rt){
memset(vis,0,sizeof(vis));
memset(dis[rt-1],0x3f,sizeof(dis[rt-1]));
dis[rt-1][rt-1]=0;
que.push(node(rt,0));rt-=1;
while(!que.empty()) {
int x(que.top().x),dist(que.top().dis);
que.pop();
if (vis[x]) continue;
vis[x]=1;
for (ri i(first[x]),v;i;i=e[i].nxt) {
if (dis[rt][v=e[i].v-1]>dist+e[i].w) {
dis[rt][v]=dist+e[i].w;
que.push(node(v+1,dis[rt][v]));
}
}
}
}
inline int calc(int x,int l) {
if ((1<<l)>x) return x;
ri tmp=x&((1<<l)-1);
return (x>>(l+1))<<l|tmp;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.txt","w",stdout);
read(n),read(m),read(k);
for (ri i(1),u,v,w;i<=m;p(i)) read(u),read(v),read(w),add(u,v,w);
read(q);
for (ri i(1),r,s;i<=q;p(i)) {
read(r);read(s);
pre[s-2]|=1<<(r-2);
}
for (ri i(1);i<=k+1;p(i)) dij(i);
if (!k) {printf("%d
",dis[0][n-1]);return 0;}
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for (ri i(1);i<=k;p(i)) if (!pre[i-1]) dp[0][i]=dis[0][i];
S=(1<<k)-1;
for (ri i(1);i<=S;p(i)) {
for (ri j(0);j<k;p(j)) {
if (!((1<<j)&i)) continue;
ri tmp1=calc(i,j);
for (ri l(0);l<k;p(l)) {
if (!(i&(1<<l))&&((i&pre[l])==pre[l])) {
ri tmp2=calc(i,l);
dp[tmp2][l+1]=cmin(dp[tmp1][j+1]+dis[j+1][l+1],dp[tmp2][l+1]);
}
}
}
}
ri ans=INT_MAX;
for (ri i(1),tmp;i<=k;p(i)) {
tmp=calc(S,i-1);
ans=cmin(ans,dp[tmp][i]+dis[i][n-1]);
}
printf("%d
",ans);
return 0;
}
}
int main() {return nanfeng::main();}