• 蝙蝠算法


    2012年,英国剑桥大学学者杨新社提出一种新的元启发式优化算法-蝙蝠算法(Bat Algorithm, BA),该算法通过模拟蝙蝠回声定位行为来寻找函数优化问题的最优解。

    1. 蝙蝠算法的基本思想

    由于蝙蝠的回声定位行为与函数优化相似,所以可以利用蝙蝠的回声定位行为来寻找最优解。蝙蝠算法把蝙蝠看作优化问题的可行解,通过模拟复杂环境中精确捕获食物的机制解决优化问题。
    首先,在搜索空间随机分布若干个蝙蝠,确定种群个体的初始位置及初始速度,对种群中各个蝙蝠进行适应度评价,寻找最优个体位置;
    然后,通过调整频率产生新的解并修改个体的飞行速度和位置。在蝙蝠的速度和位置的更新过程中,频率本质上控制着这些蝙蝠群的移动步伐和范围;
    蝙蝠在寻优过程中,通过调节脉冲发生率和响度促使蝙蝠朝着最优解方向移动。蝙蝠在刚开始搜索时具有较小的脉冲发生率,蝙蝠有较大的概率在当前最优解周围进行局部搜索,同时较大的响度使得局部搜索范围比较大,有较大的概率探测到更好的解。随着迭代的增加,脉冲发生率增加,响度减少,局部搜索概率减少,局部挖掘的范围也很小,蝙蝠不断扫描定位目标,最终搜索到最优解。

    2. 蝙蝠算法的数学描述

    为了能使蝙蝠回声定位机制形成算法,有必要对蝙蝠回声定位及飞行速度、位置进行理想化建模:
    (1) 所有的蝙蝠利用超声波回声的感觉差异判断猎物、障碍物之间的差异;
    (2) 蝙蝠是以速度\(v_i\)、位置\(x_i\)、固定频率\(f_{min}\)、可变化波长\(\lambda\)和响度\(A_0\)随机飞行的,并用不同的波长\(\lambda\)(或者频率\(f\))和响度\(A_0\)搜索猎物。它们会根据接近猎物的程度自动调整它们发出脉冲的波长(或频率);
    (3) 尽管响度会以更多的方式变化,可以假定它的变化是从一个很大的值\(A_0\)到最小值\(A_{min}\)
    (4) 由于计算量的问题,不能使用无限追踪来估计时间延迟和三维地形;
    (5) 为了简单起见,使用一些近似值。一般设置频率范围为\([f_{min}, f_{max}]\)对应的波长范围为\([\lambda_{min}, \lambda_{max}]\)
    对于给定的问题,为了便于实现,可以使用任意波长,并且可以通过调整波长来搜索范围,而可探测的区域的选择方式为先选择感兴趣的区域,然后慢慢缩小。因为波长\(\lambda \times f\)为常数,所以可以在固定波长\(\lambda\)时,改变频率。
    为了简单期间,可以假定\(f \in [0, f_{min}]\)。显然,较高的频率有较短的波长和较短的搜索距离。通常蝙蝠的搜索范围在几米内。脉冲发生率可以设定为\([0,1]\)范围内,其中0表示没有发出脉冲,1表示脉冲发生率最大。

    3. 蝙蝠的速度和位置更新公式

    3.1 频率更新公式

    \[f_i = f_{min} + (f_{max} - f_{min})\beta \]

    其中,\(\beta \in [0,1]\)是一个随机向量;\(x_*\) 是当前最优解。
    3.2 速度更新公式

    \[v_i^{t} = v_i^{t-1} + (x_{i}^{t} - x_*)f_i \]

    3.3 位置更新公式

    \[x_i^{t} = x_i^{t-1} + v_i^{t} \]

    3.4 局部搜索更新公式

    \[x_i^{new} = x_i^{old} + \epsilon A^{t} \\ \]

    其中,\(\epsilon \in [-1,1]\)是一个随机数,\(A^{t}\)是当前迭代的平均响度。
    3.5 响度和脉冲发生率更新公式
    脉冲发射的响度\(A_i\)和脉冲发生率\(r_i\)要随着迭代过程的进行来更新。蝙蝠一旦发现了猎物,响度会逐渐降低,同时脉冲速率就会提高,响度会以任意简便值改变。

    \[A_{i}^{t+1} = \alpha A_{i}^{t} \\ r_{i}^{t+1} = r_{i}^{0}[1 - exp(-\gamma t)] \]

    其中,\(\alpha\)\(\gamma\)是常量。参数的选择需要一定的经验。初始时,每只蝙蝠所发出的响度和脉冲发生率的值都是不同的,这可以通过随机选择。初始的响度\(A_{i}^{0}\)通常在\([0,1]\)之间,而初始脉冲发生率一般去在0附近。
    4. 算法实现
    版本一

    % =========================================================================
    % Title: Bat Algorihtm
    % Author: Lee WenTsao
    % Time: 2022-04-12
    % E-mail: liwenchao36@163.com
    % =========================================================================
    clc;
    clear;
    
    %% 问题参数定义
    n = 20;   % 种群规模
    d = 10;   % 维度
    
    fobj = @ sphere;  % 目标函数
    
    %% 蝙蝠算法参数定义
    t_max = 1000;     % 最大迭代次数
    
    A = 1;            % 初始响度
    r0 = 1;           % 初始脉冲发生率
    
    alpha = 0.97;
    gamma = 0.1;
    
    Freq_min = 0;     % 蝙蝠发射频率的下界
    Freq_max = 2;     % 蝙蝠发射频率的上界
    
    iter = 0;
    
    %% 初始化动态参数
    Freq = zeros(n,1);     
    v  = zeros(n,d);     % 蝙蝠的初始速度
    
    lb = -5*ones(1,d);  % 下界
    ub =  5*ones(1,d);  % 上界
    
    %% 初始化种群
    for i=1:n
        Sol(i, :) = lb + (ub - lb).*rand(1, d);   % 随机初始化种群
        Fitness(i) = fobj(Sol(i, :));             % 评估
    end
    [fmin, idx] = min(Fitness);
    best = Sol(idx,:);
    
    %% 添加云图
    
    
    %% 开始仿真
    while iter<t_max
        r = r0*(1-exp(-gamma*iter));
        A = alpha*A;
    
        for i=1:n
            % 全局搜索
            Freq(i) = Freq_min + (Freq_max - Freq_min)*rand;     % 频率更新公式 
            v(i,:)=v(i,:)+(Sol(i,:)-best)*Freq(i);               % 速度更新
            S(i, :) = Sol(i, :) + v(i,:);                        % 位置更新
            
            % 局部搜索
            if rand<r
                 S(i, :) = best + 0.1*randn(1,d)*A;
            end
    
            % 边界预处理
            S(i, :) = simplebounds(S(i, :), lb, ub);
    
            % 评估
            Fnew = fobj(S(i, :));
            if Fnew<=Fitness(i) & rand>A
                Sol(i,:) = S(i, :);
                Fitness(i) = Fnew; 
            end
    
            if Fnew<fmin
                best = S(i,:);
                fmin = Fnew;
            end
        end
        iter = iter + 1;
    
        if ~mod(iter,10)
            disp(['Iteration=',num2str(iter),' fmin=',num2str(fmin)]);
        end
    end
    
    function s=simplebounds(s,Lb,Ub)
        % Apply the lower bound
        ns_tmp=s;
        I=ns_tmp<Lb;
        ns_tmp(I)=Lb(I);
        
        % Apply the upper bounds 
        J=ns_tmp>Ub;
        ns_tmp(J)=Ub(J);
        % Update this new move 
        s=ns_tmp;
    end
    

    第二版本(杨老师原版)

    % ----------------------------------------------------------------------- %
    % The bat algorithm (BA) for continuous function optimization (demo)      %
    % Programmed by Xin-She Yang @Cambridge University 2010                   %
    % ----------------------------------------------------------------------- %
    
    % References: ----------------------------------------------------------- %
    % 1) Yang X.S. (2010). A New Metaheuristic Bat-Inspired Algorithm, In:    %
    %   Nature-Inspired Cooperative Strategies for Optimization (NICSO 2010), %
    %   Studies in Computational Intelligence, vol 284. Springer, Berlin.     %
    %   https://doi.org/10.1007/978-3-642-12538-6_6                           %
    % 2) Yang X.S. (2014). Nature-Inspired Optimization Algorithms, Elsevier. %
    % ----------------------------------------------------------------------- %
    
    function [best,fmin,N_iter]=bat_algorithm_new(inp)
    if nargin<1,
       inp=[20 1000];    % Default values for n=10 and t_max=1000
    end
    % Initialize all the default parameters
    n=inp(1);       % Population size, typically 20 to 40 
    t_max=inp(2);   % Maximum number of iterations
    A=1;            % Initial loudness (constant or decreasing)
    r0=1;           % The initial pulse rate (constant or decreasing)
    alpha=0.97;     % Parameter alpha
    gamma=0.1;      % Parameter gamma
    % Frequency range
    Freq_min=0;     % Frequency minimum
    Freq_max=2;     % Frequency maximum
    t=0;            % Initialize iteration counter
    % Dimensions of the search variables
    d=10;          
    % Initialization of all the arrays
    Freq=zeros(n,1);   % Frequency-tuning array
    v=zeros(n,d);      % Equivalnet velocities or increments
    Lb=-5*ones(1,d);   % Lower bounds
    Ub=5*ones(1,d);    % Upper bounds
    % Initialize the population/solutions
    for i=1:n,
      Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
      Fitness(i)=Fun(Sol(i,:));
    end
    % Find the best solution of the initial population
    [fmin,I]=min(Fitness);
    best=Sol(I,:);
    
    % Start the iterations -- the Bat Algorithm (BA) -- main loop
    while (t<t_max)
       % Varying loundness (A) and pulse emission rate (r)
       r=r0*(1-exp(-gamma*t));
       A=alpha*A;
       % Loop over all bats/solutions
       for i=1:n,
           Freq(i)=Freq_min+(Freq_max-Freq_min)*rand;
           v(i,:)=v(i,:)+(Sol(i,:)-best)*Freq(i);
           S(i,:)=Sol(i,:)+v(i,:);
       % Check a switching condition
       if rand<r,
           S(i,:)=best+0.1*randn(1,d)*A;
       end
    
       % Check if the new solution is within the simple bounds
       S(i,:)=simplebounds(S(i,:),Lb,Ub);
       % Evaluate new solutions
       Fnew=Fun(S(i,:));
       % If the solution improves or not too loudness
        if ((Fnew<=Fitness(i)) & (rand>A)),
           Sol(i,:)=S(i,:);
           Fitness(i)=Fnew;
        end
       % Update the current best solution
        if Fnew<=fmin,
           best=S(i,:);
           fmin=Fnew;
        end
       end % end of for i
      t=t+1;  % Update iteration counter
      % Display the results every 100 iterations
      if ~mod(t,100),
         disp(strcat('Iteration = ',num2str(t)));    
         best, fmin 
      end
    end  % End of the main loop
    
    % Output the best solution
    disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);
    
    % Application of simple bounds/constraints
    function s=simplebounds(s,Lb,Ub)
      % Apply the lower bound
      ns_tmp=s;
      I=ns_tmp<Lb;
      ns_tmp(I)=Lb(I);
      
      % Apply the upper bounds 
      J=ns_tmp>Ub;
      ns_tmp(J)=Ub(J);
      % Update this new move 
      s=ns_tmp;
    
    % The cost function or objective function
    function z=Fun(x)
        z=sum((x-2).^2);      % Optimal solution fmin=0 at (2,2,...,2)
    
  • 相关阅读:
    docker进入交互界面
    FCN训练注意事项
    centos7 常用命令
    vim锁定,不能动
    爬虫三之beautifulsoup
    爬虫二之Requests
    爬虫一之基本操作
    MathType的配置问题;将word中的公式转换为mathtype格式失败,缺少OMML2MML.XSL
    神经网络实现Discuz验证码识别
    修改linux环境变量配置文件
  • 原文地址:https://www.cnblogs.com/mysterygust/p/16098205.html
Copyright © 2020-2023  润新知