• 洛谷 P3959 [NOIP2017]宝藏 题解


    通向地底的传送门

    题目描述

    参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 (n) 个深埋在地下的宝藏屋, 也给出了这 (n) 个宝藏屋之间可供开发的$ m$ 条道路和它们的长度。

    小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远,也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

    小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

    在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

    新开发一条道路的代价是 (L×K)

    (L) 代表这条道路的长度,(K) 代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋)。

    请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

    输入输出格式

    输入格式:

    第一行两个用空格分离的正整数 (n,m),代表宝藏屋的个数和道路数。

    接下来 (m) 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏屋的编号(编号为 (1-n) ),和这条道路的长度 (v)

    输出格式:

    一个正整数,表示最小的总代价。

    输入输出样例

    输入样例#1:

    4 5 
    1 2 1 
    1 3 3 
    1 4 1 
    2 3 4 
    3 4 1
    

    输出样例#1:

    4
    

    输入样例#2:

    4 5 
    1 2 1 
    1 3 3 
    1 4 1 
    2 3 4 
    3 4 2  
    

    输出样例#2:

    5
    

    数据规模与约定

    对于 $ 20% $ 的数据: 保证输入是一棵树,(1≤n≤8) , (v≤5000) , 且所有的 (v) 都相等。

    对于 $ 40% $ 的数据: (1≤n≤8)(0≤m≤1000)(v≤5000) 且所有的 (v) 都相等。

    对于 $ 70% $ 的数据: (1≤n≤8)(0≤m≤1000)(v≤5000)

    对于 $ 100% $ 的数据: (1≤n≤12)(0≤m≤1000)(v≤500000)

    思路

    显然这道题可以用模拟退火做,当然这篇题解存在的意义绝不是为了对这个毒瘤算法进行讲解,想要了解更多相关信息的读者可以自行脑补右转自家搜索引擎。

    首先看数据范围,(1≤n≤12),如此之小大家的第一反应应该都是状压(DP)吧。再根据题意,我们不难对这个又臭又长混淆视听的题面进行简化:

    • 给定一个 (N) 个点 (M) 条边的无向图,要求在图中找出一颗生成树,满足树上的节点到根节点的深度 (d) 与该点连到树中的边的权值 (w) 之积的和最小。

    对于选定节点的每一种局面,我们用一个二进制数进行记录,其每一位上的 (1) 表示该点已被选中,反之则没被选中。使用数组 (f[i]) 记录当前局面下得最小代价。

    显然地,对于每一个可能的根节点 (root) ,有:

    	f[1 << (root - 1)] = 0;
    
    

    表示初始状态下代价为0。

    	f[(1 << n) - 1];
    

    表示我们要求的目标代价。

    由于数据范围很小,我们枚举每个点作为根节点计算 (f) 数组,再不断对答案进行更新即可。

    代码实现上,我们使用深度优先搜索遍历状态空间,对于每一个状态 (state) ,摘出其中选定的点(位运算的相关操作稍后会进行补充),遍历该点的所有出边,维护一个记录当前点到选定根节点的 (dis) 数组,一旦得到当前状态的更优方案,就对 (f) 数组进行更新,如此往复直到所有状态都被更新完毕为止。

    值得注意的是,由于每次枚举根节点都相当于对答案数组重新进行计算,所以务必不要忘记对各个变量进行初始化工作。以及,由于给定的数据范围中点数极少而边数相当的多,在图的储存过程中要注意可能出现的重边情况,此时取长度较短的边保留即可。

    AC代码

    #include<iostream>
    #include<cstdio>
    #include<cctype>
    #include<cstring>
    #include<queue>
    using namespace std;
    int read(){
    	int re = 0,ch = getchar();
    	while(!isdigit(ch))ch = getchar();
    	while(isdigit(ch))re = (re<<1) + (re<<3) + ch - '0',ch = getchar();
    	return re;
    }
    int g[13][13],dis[13],f[1<<13];
    int n,m,ans = 0x3f3f3f3f;
    void dfs(int state){
    	for(int i = 1;i <= n;i++){
    		if(!((1<<(i-1))&state)) continue;
                    //排除不是点集中的边
    		for(int j = 1;j <= n;j++){
    			if(g[i][j] == 0x3f3f3f3f || j == i) continue;
                            //遍历出边
    			if(f[state|(1<<j-1)] > f[state] + g[i][j] * dis[i]){
                            //若可以更新f数组
    				int tmp = dis[j];
    				dis[j] = dis[i] + 1;
    				f[state|(1<<(j-1))] = f[state] + g[i][j] * dis[i];
    				dfs(state|(1<<(j-1)));
                                    //对新的状态进行递归搜索
    				dis[j] = tmp;
                                    //回溯
    			}
    		}
    	}
    }
    int main(){
    	n = read(),m = read();
    	int u,v,w;
    	memset(g,0x3f,sizeof(g));
    	for(int i = 1;i <= m;i++){
    		u = read(),v = read(),w = read();
    		g[u][v] = min(g[u][v],w);
    		g[v][u] = min(g[v][u],w);
                    //存图与重边处理
    	}
    	for(int i = 1;i <= n;i++){
    		memset(dis,0x3f,sizeof(dis));
    		memset(f,0x3f,sizeof(f));
    		dis[i] = 1;
    		f[1<<(i-1)] = 0;
                    //初始化
    		dfs(1<<(i-1));
    		ans = min(ans,f[(1<<n)-1]);
                    //更新答案
    	}
    	cout << ans;
    	return 0;
    } 
    
  • 相关阅读:
    在不给spring管理的类中获取类
    poi操作excel
    闭包
    输入url的过程发生了什么?
    跨域
    函数节流-防抖函数
    预解析-案例
    移动端适配方案
    实现元素水平居中和垂直居中的几种方法
    css小知识点
  • 原文地址:https://www.cnblogs.com/mysterious-garden/p/9757933.html
Copyright © 2020-2023  润新知