• 面试突击


     消息队列 MQ

    (1)为什么使用消息队列啊?

    解耦:场景1:A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?

      一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用MQ给他异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个MQ去进行系统的解耦。

    异步:A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,用户感觉搞个什么东西,慢死了慢死了。

    削峰:每天0点到11点,A系统风平浪静,每秒并发请求数量就100个。结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条。但是系统最大的处理能力就只能是每秒钟处理1000个请求啊

    (2)消息队列有什么优点和缺点啊?

    系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。

    系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已

    一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。

    所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉

    (3)kafka、activemq、rabbitmq、rocketmq都有什么优点和缺点啊?

    特性

    ActiveMQ

    RabbitMQ

    RocketMQ

    Kafka

    单机吞吐量

    万级,吞吐量比RocketMQ和Kafka要低了一个数量级

    万级,吞吐量比RocketMQ和Kafka要低了一个数量级

    10万级,RocketMQ也是可以支撑高吞吐的一种MQ

    10万级别,这是kafka最大的优点,就是吞吐量高。

    一般配合大数据类的系统来进行实时数据计算、日志采集等场景

    topic数量对吞吐量的影响

    topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降

    这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic

    topic从几十个到几百个的时候,吞吐量会大幅度下降

    所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源

    时效性

    ms级

    微秒级,这是rabbitmq的一大特点,延迟是最低的

    ms级

    延迟在ms级以内

    可用性

    高,基于主从架构实现高可用性

    高,基于主从架构实现高可用性

    非常高,分布式架构

    非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用

    消息可靠性

    有较低的概率丢失数据

    经过参数优化配置,可以做到0丢失

    经过参数优化配置,消息可以做到0丢失

    功能支持

    MQ领域的功能极其完备

    基于erlang开发,所以并发能力很强,性能极其好,延时很低

    MQ功能较为完善,还是分布式的,扩展性好

    功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准

    优劣势总结

    非常成熟,功能强大,在业内大量的公司以及项目中都有应用

    偶尔会有较低概率丢失消息

    而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本

    而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用

    erlang语言开发,性能极其好,延时很低;

    吞吐量到万级,MQ功能比较完备

    而且开源提供的管理界面非常棒,用起来很好用

    社区相对比较活跃,几乎每个月都发布几个版本分

    在国内一些互联网公司近几年用rabbitmq也比较多一些

    但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。

    而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。

    而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。

    接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障

    日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景

    而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控

    社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码

    还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的

    kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展

    同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量

    而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略

    这个特性天然适合大数据实时计算以及日志收集

    综上所述,各种对比之后,我个人倾向于是:

      一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;

      后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;

      不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,但是我提醒一下自己想好社区万一突然黄掉的风险,对自己公司技术实力有绝对自信的,我推荐用RocketMQ,否则回去老老实实用RabbitMQ吧,人是活跃开源社区,绝对不会黄

      所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择

      如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范

    (4)如何保证消息队列的高可用啊?

    1:RabbitMQ  

     rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

    1)单机模式

      就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式

    2)普通集群模式

      意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。完了你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。

      这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。

      而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。

      所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。

    3)镜像集群模式

      这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。

      这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue

      那么怎么开启这个镜像集群模式呢?我这里简单说一下,避免面试人家问你你不知道,其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

    2:kafka的高可用性

      kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。 

      这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。

      实际上rabbitmq之类的,并不是分布式消息队列,他就是传统的消息队列,只不过提供了一些集群、HA的机制而已,因为无论怎么玩儿,rabbitmq一个queue的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个queue的完整数据。

      kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。

      kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。

      这么搞,就有所谓的高可用性了,因为如果某个broker宕机了,没事儿,那个broker上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。

      写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)

      消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。

      实际上这块机制,讲深了,是可以非常之深入的,但是我还是回到我们这个课程的主题和定位,聚焦面试,至少你听到这里大致明白了kafka是如何保证高可用机制的了,对吧?不至于一无所知,现场还能给面试官画画图。要遇上面试官确实是kafka高手,深挖了问,那你只能说不好意思,太深入的你没研究过。

      但是大家一定要明白,这个事情是要权衡的,你现在是要快速突击常见面试题体系,而不是要深入学习kafka,要深入学习kafka,你是没那么多时间的。你只能确保,你之前也许压根儿不知道这块,但是现在你知道了,面试被问到,你大概可以说一说。然后很多其他的候选人,也许还不如你,没看过这个,被问到了压根儿答不出来,相比之下,你还能说点出来,大概就是这个意思了。

    (5)如何保证消息不被重复消费(如何保证消息消费时的幂等性)?

      首先就是比如rabbitmq、rocketmq、kafka,都有可能会出现消费重复消费的问题,正常。因为这问题通常不是mq自己保证的,是给你保证的。然后我们挑一个kafka来举个例子,说说怎么重复消费吧。

      kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。

      但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。

      其实重复消费不可怕,可怕的是你没考虑到重复消费之后,怎么保证幂等性。

      给你举个例子吧。假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?

      一条数据重复出现两次,数据库里就只有一条数据,这就保证了系统的幂等性

      幂等性,我通俗点说,就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错。

      那所以第二个问题来了,怎么保证消息队列消费的幂等性?

    其实还是得结合业务来思考,我这里给几个思路:

      (1)比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧

      (2)比如你是写redis,那没问题了,反正每次都是set,天然幂等性

      (3)比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。

      还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,我们之前线上系统就有这个问题,就是拿到数据的时候,每次重启可能会有重复,因为kafka消费者还没来得及提交offset,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据

    如何保证MQ的消费是幂等性的,需要结合具体的业务来看

    (6)如何保证消息的可靠性传输(如何处理消息丢失的问题)?

      用mq有个基本原则,就是数据不能多一条,也不能少一条,不能多,就是刚才说的重复消费和幂等性问题。不能少,就是说这数据别搞丢了。那这个问题你必须得考虑一下。

      这个丢数据,mq一般分为两种,要么是mq自己弄丢了,要么是我们消费的时候弄丢了。咱们从rabbitmq和kafka分别来分析一下吧

    (1)rabbitmq

    1)生产者弄丢了数据

      生产者将数据发送到rabbitmq的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。

      此时可以选择用rabbitmq提供的事务功能,就是生产者发送数据之前开启rabbitmq事务(channel.txSelect),然后发送消息,如果消息没有成功被rabbitmq接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,那么可以提交事务(channel.txCommit)。但是问题是,rabbitmq事务机制一搞,基本上吞吐量会下来,因为太耗性能。

      所以一般来说,如果你要确保说写rabbitmq的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了rabbitmq中,rabbitmq会给你回传一个ack消息,告诉你说这个消息ok了。如果rabbitmq没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。

      事务机制和cnofirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。

      所以一般在生产者这块避免数据丢失,都是用confirm机制的。

    2)rabbitmq弄丢了数据

      就是rabbitmq自己弄丢了数据,这个你必须开启rabbitmq的持久化,就是消息写入之后会持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,rabbitmq还没持久化,自己就挂了,可能导致少量数据会丢失的,但是这个概率较小。

      设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,rabbitmq哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。

      而且持久化可以跟生产者那边的confirm机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack了,所以哪怕是在持久化到磁盘之前,rabbitmq挂了,数据丢了,生产者收不到ack,你也是可以自己重发的。

      哪怕是你给rabbitmq开启了持久化机制,也有一种可能,就是这个消息写到了rabbitmq中,但是还没来得及持久化到磁盘上,结果不巧,此时rabbitmq挂了,就会导致内存里的一点点数据会丢失。

    3)消费端弄丢了数据

      rabbitmq如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,rabbitmq认为你都消费了,这数据就丢了。

      这个时候得用rabbitmq提供的ack机制,简单来说,就是你关闭rabbitmq自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。

    (2)kafka

    1)消费端弄丢了数据

      唯一可能导致消费者弄丢数据的情况,就是说,你那个消费到了这个消息,然后消费者那边自动提交了offset,让kafka以为你已经消费好了这个消息,其实你刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。

      这不是一样么,大家都知道kafka会自动提交offset,那么只要关闭自动提交offset,在处理完之后自己手动提交offset,就可以保证数据不会丢。但是此时确实还是会重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。

      生产环境碰到的一个问题,就是说我们的kafka消费者消费到了数据之后是写到一个内存的queue里先缓冲一下,结果有的时候,你刚把消息写入内存queue,然后消费者会自动提交offset。

      然后此时我们重启了系统,就会导致内存queue里还没来得及处理的数据就丢失了

    2)kafka弄丢了数据

      这块比较常见的一个场景,就是kafka某个broker宕机,然后重新选举partiton的leader时。大家想想,要是此时其他的follower刚好还有些数据没有同步,结果此时leader挂了,然后选举某个follower成leader之后,他不就少了一些数据?这就丢了一些数据啊。

      生产环境也遇到过,我们也是,之前kafka的leader机器宕机了,将follower切换为leader之后,就会发现说这个数据就丢了

      所以此时一般是要求起码设置如下4个参数:

      给这个topic设置replication.factor参数:这个值必须大于1,要求每个partition必须有至少2个副本

      在kafka服务端设置min.insync.replicas参数:这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系,没掉队,这样才能确保leader挂了还有一个follower吧

      在producer端设置acks=all:这个是要求每条数据,必须是写入所有replica之后,才能认为是写成功了

      在producer端设置retries=MAX(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了

    我们生产环境就是按照上述要求配置的,这样配置之后,至少在kafka broker端就可以保证在leader所在broker发生故障,进行leader切换时,数据不会丢失

    3)生产者会不会弄丢数据

      如果按照上述的思路设置了ack=all,一定不会丢,要求是,你的leader接收到消息,所有的follower都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。

    (7)如何保证消息的顺序性?

    场景:举个例子,我们以前做过一个mysql binlog同步的系统,压力还是非常大的,日同步数据要达到上亿。mysql -> mysql,常见的一点在于说大数据team,就需要同步一个mysql库过来,对公司的业务系统的数据做各种复杂的操作。

      你在mysql里增删改一条数据,对应出来了增删改3条binlog,接着这三条binlog发送到MQ里面,到消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你楞是换了顺序给执行成删除、修改、增加,不全错了么。

      本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。

    先看看顺序会错乱的俩场景

      (1)rabbitmq:一个queue,多个consumer,这不明显乱了

      (2)kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了

    那如何保证消息的顺序性呢?简单简单

      (1)rabbitmq:拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理

      (2)kafka:一个topic,一个partition,一个consumer,内部单线程消费,写N个内存queue,然后N个线程分别消费一个内存queue即可

    (8)如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?

      你看这问法,其实本质针对的场景,都是说,可能你的消费端出了问题,不消费了,或者消费的极其极其慢。接着就坑爹了,可能你的消息队列集群的磁盘都快写满了,都没人消费,这个时候怎么办?或者是整个这就积压了几个小时,你这个时候怎么办?或者是你积压的时间太长了,导致比如rabbitmq设置了消息过期时间后就没了怎么办?

    场景一 :大量消息在mq里积压了几个小时了还没解决

      1)先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉

      2)新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量

      3)然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue

      4)接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据

      5)这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据

      6)等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息

    场景二 :rabbitmq设置了消息过期导致数据丢失

      假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。

      这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。

      这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。

      假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次

    场景二 :消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了

      这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。

    分布式缓存

    (1)在项目中缓存是如何使用的?

     1)缓存

     2)分布式session

     3)分布式锁

     4)消息队列系统

    (2)为啥在项目里要用缓存呢?

      用缓存,主要是俩用途,高性能高并发

    (3)用了缓存之后会有啥不良的后果?

      1)缓存与数据库双写不一致

      解决方案: 

         先更新数据库,再删缓存。数据库的读操作的速度远快于写操作的,所以脏数据很难出现。可以对异步延时删除策略,保证读请求完成以后,再进行删除操作。

      2)缓存雪崩

      解决方案:

      1.  使用 Redis 高可用架构:使用 Redis 集群来保证 Redis 服务不会挂掉

      2.  缓存时间不一致,给缓存的失效时间,加上一个随机值,避免集体失效

      3.  限流降级策略:有一定的备案,比如个性推荐服务不可用了,换成热点数据推荐服务

      3)缓存穿透

      解决方案:  

      1.  在接口做校验

      2.  存null值(缓存击穿加锁)

      3.  布隆过滤器拦截:将所有可能的查询key 先映射到布隆过滤器中,查询时先判断key是否存在布隆过滤器中,存在才继续向下执行,如果不存在,则直接返回。布隆过滤器将值进行多次哈希bit存储,布隆过滤器说某个元素在,可能会被误判。布隆过滤器说某个元素不在,那么一定不在。

      4)缓存并发竞争

       解决方案: 

      1.  分布式锁+时间戳

      2. 利用消息队列

    (4)redis和memcached有啥区别

    1. 存储方式上:memcache会把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。redis有部分数据存在硬盘上,这样能保证数据的持久性。

    2. 数据支持类型上:memcache对数据类型的支持简单,只支持简单的key-value,,而redis支持五种数据类型。

    3. 用底层模型不同:它们之间底层实现方式以及与客户端之间通信的应用协议不一样。redis直接自己构建了VM机制,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

    4. value的大小:redis可以达到1GB,而memcache只有1MB。

    (5)Redis 的数据结构及使用场景

    1. String字符串:字符串类型是 Redis 最基础的数据结构,首先键都是字符串类型,而且 其他几种数据结构都是在字符串类型基础上构建的,我们常使用的 set key value 命令就是字符串。常用在缓存、计数、共享Session、限速等。

    2. Hash哈希:在Redis中,哈希类型是指键值本身又是一个键值对结构,哈希可以用来存放用户信息,比如实现购物车。

    3. List列表(双向链表):列表(list)类型是用来存储多个有序的字符串。可以做简单的消息队列的功能。

    4. Set集合:集合(set)类型也是用来保存多个的字符串元素,但和列表类型不一 样的是,集合中不允许有重复元素,并且集合中的元素是无序的,不能通过索引下标获取元素。利用 Set 的交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

    5. Sorted Set有序集合(跳表实现):Sorted Set 多了一个权重参数 Score,集合中的元素能够按 Score 进行排列。可以做排行榜应用,取 TOP N 操作。

    (6)Redis 的数据过期策略

    Redis 中数据过期策略采用定期删除+惰性删除策略

    • 定期删除策略:Redis 启用一个定时器定时监视所有的 key,判断key是否过期,过期的话就删除。这种策略可以保证过期的 key 最终都会被删除,但是也存在严重的缺点:每次都遍历内存中所有的数据,非常消耗 CPU 资源,并且当 key 已过期,但是定时器还处于未唤起状态,这段时间内 key 仍然可以用。

    • 惰性删除策略:在获取 key 时,先判断 key 是否过期,如果过期则删除。这种方式存在一个缺点:如果这个 key 一直未被使用,那么它一直在内存中,其实它已经过期了,会浪费大量的空间。

    • 这两种策略天然的互补,结合起来之后,定时删除策略就发生了一些改变,不在是每次扫描全部的 key 了,而是随机抽取一部分 key 进行检查,这样就降低了对 CPU 资源的损耗,惰性删除策略互补了为检查到的key,基本上满足了所有要求。但是有时候就是那么的巧,既没有被定时器抽取到,又没有被使用,这些数据又如何从内存中消失?没关系,还有内存淘汰机制,当内存不够用时,内存淘汰机制就会上场。淘汰策略分为:

      1. 当内存不足以容纳新写入数据时,新写入操作会报错。(Redis 默认策略)

      2. 当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 Key。(LRU推荐使用)

      3. 当内存不足以容纳新写入数据时,在键空间中,随机移除某个 Key。

      4. 当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 Key。这种情况一般是把 Redis 既当缓存,又做持久化存储的时候才用。

      5. 当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 Key。

      6. 当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 Key 优先移除。

    (7)单线程的Redis为什么快

    1. 纯内存操作

    2. 单线程操作,避免了频繁的上下文切换

    3. 合理高效的数据结构

    4. 采用了非阻塞I/O多路复用机制

    (8)Redis的持久化机制

    Redis为了保证效率,数据缓存在了内存中,但是会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件中,以保证数据的持久化。Redis的持久化策略有两种:
       1. RDB:快照形式是直接把内存中的数据保存到一个dump的文件中,定时保存,保存策略。
      当Redis需要做持久化时,Redis会fork一个子进程,子进程将数据写到磁盘上一个临时RDB文件中。当子进程完成写临时文件后,将原来的RDB替换掉。


       2. AOF:把所有的对Redis的服务器进行修改的命令都存到一个文件里,命令的集合。

      使用AOF做持久化,每一个写命令都通过write函数追加到appendonly.aof中。aof的默认策略是每秒钟fsync一次,在这种配置下,就算发生故障停机,也最多丢失一秒钟的数据。
      缺点是对于相同的数据集来说,AOF的文件体积通常要大于RDB文件的体积。根据所使用的fsync策略,AOF的速度可能会慢于RDB。
      Redis默认是快照RDB的持久化方式。对于主从同步来说,主从刚刚连接的时候,进行全量同步(RDB);全同步结束后,进行增量同步(AOF)。

    (9)Redis的管道pipeline

      对于单线程阻塞式的Redis,Pipeline可以满足批量的操作,把多个命令连续的发送给Redis Server,然后一一解析响应结果。Pipelining可以提高批量处理性能,提升的原因主要是TCP连接中减少了“交互往返”的时间。pipeline 底层是通过把所有的操作封装成流,redis有定义自己的出入输出流。在 sync() 方法执行操作,每次请求放在队列里面,解析响应包。

    (10)Redis高并发、高可用架构介绍,redis集群、redis哨兵模式

    dubbo

    (1)Dubbo的容错机制

    1. 失败自动切换,当出现失败,重试其它服务器。通常用于读操作,但重试会带来更长延迟。可通过 retries="2" 来设置重试次数

    2. 快速失败,只发起一次调用,失败立即报错。通常用于非幂等性的写操作,比如新增记录。

    3. 失败安全,出现异常时,直接忽略。通常用于写入审计日志等操作。

    4. 失败自动恢复,后台记录失败请求,定时重发。通常用于消息通知操作。

    5. 并行调用多个服务器,只要一个成功即返回。通常用于实时性要求较高的读操作,但需要浪费更多服务资源。可通过 forks="2" 来设置最大并行数。

    6. 广播调用所有提供者,逐个调用,任意一台报错则报错。通常用于通知所有提供者更新缓存或日志等本地资源信息

    例子说明:

    服务降级

      比如说服务A调用服务B,结果服务B挂掉了,服务A重试几次调用服务B,还是不行,直接降级,走一个备用的逻辑,给用户返回响应

    public interface HelloService {
       void sayHello();
    }
    public class HelloServiceImpl implements HelloService {
        public void sayHello() {
            System.out.println("hello world......");
        }    
    }
    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"
        xsi:schemaLocation="http://www.springframework.org/schema/beans        http://www.springframework.org/schema/beans/spring-beans.xsd        http://code.alibabatech.com/schema/dubbo        http://code.alibabatech.com/schema/dubbo/dubbo.xsd">
    
        <dubbo:application name="dubbo-provider" />
        <dubbo:registry address="zookeeper://127.0.0.1:2181" />
        <dubbo:protocol name="dubbo" port="20880" />
        <dubbo:service interface="com.zhss.service.HelloService" ref="helloServiceImpl" timeout="10000" />
        <bean id="helloServiceImpl" class="com.zhss.service.HelloServiceImpl" />
    
    </beans>
    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"
        xsi:schemaLocation="http://www.springframework.org/schema/beans        http://www.springframework.org/schema/beans/spring-beans.xsd        http://code.alibabatech.com/schema/dubbo        http://code.alibabatech.com/schema/dubbo/dubbo.xsd">
    
        <dubbo:application name="dubbo-consumer"  />
    
        <dubbo:registry address="zookeeper://127.0.0.1:2181" />
    
        <dubbo:reference id="fooService" interface="com.test.service.FooService"  timeout="10000" check="false" mock="return null">
        </dubbo:reference>
    
    </beans>

    现在就是mock,如果调用失败统一返回null 

    但是可以将mock修改为true,然后在跟接口同一个路径下实现一个Mock类,命名规则是接口名称加Mock后缀。然后在Mock类里实现自己的降级逻辑。

    public class HelloServiceMock implements HelloService {
        public void sayHello() {
            // 降级逻辑
        }
    }

    失败重试和超时重试

      所谓失败重试,就是consumer调用provider要是失败了,比如抛异常了,此时应该是可以重试的,或者调用超时了也可以重试。

    <dubbo:reference id="xxxx" interface="xx" check="true" async="false" retries="3" timeout="2000"/>

    某个服务的接口,要耗费5s,你这边不能干等着,你这边配置了timeout之后,我等待2s,还没返回,我直接就撤了,不能干等你

    如果是超时了,timeout就会设置超时时间;如果是调用失败了自动就会重试指定的次数

    你就结合你们公司的具体的场景来说说你是怎么设置这些参数的,timeout,一般设置为200ms,我们认为不能超过200ms还没返回

    retries,3次,设置retries,还一般是在读请求的时候,比如你要查询个数据,你可以设置个retries,如果第一次没读到,报错,重试指定的次数,尝试再次读取2次

    (2)Dubbo注册中心挂了还可以继续通信么

      可以,因为刚开始初始化的时候,消费者会将提供者的地址等信息拉取到本地缓存,所以注册中心挂了可以继续通信。

    (3)SPI是啥思想?dubbo的SPI机制

      SPI,即(service provider interface)机制,有很多组件的实现,如日志、数据库访问等都是采用这样的方式,一般通用组件为了提升可扩展性,基于接口编程,将操作接口形成标准规范,但是可以开放多种扩展实现,这种做法也符合开闭设计原则,使组件具有可插拨特性。不同的厂商或组织可以基于规范推出自己的实现,只需要在自己的jar包中通过配置文件和相应的实现类即可以实现扩展。甚至开发者自己也可以很方便对框架进行定制化实现。  

      说白了是什么意思呢,比如你有个接口,现在这个接口有3个实现类,那么在系统运行的时候对这个接口到底选择哪个实现类呢?这就需要spi了,需要根据指定的配置或者是默认的配置,去找到对应的实现类加载进来,然后用这个实现类的实例对象。

    JDK SPI介绍

    JDK实现spi服务查找: ServiceLoader。
    举个例子:
    首先定义下示例接口

    package com.example;
    
    public interface Spi {
           boolean isSupport(String name);
           String sayHello();
    }

    ServiceLoader会遍历所有jar查找META-INF/services/com.example.Spi文件

    A厂商提供实现

    package com.a.example;
    
    public class SpiAImpl implements Spi {
    
      public boolean isSupport(String name) {
        return"SPIA".equalsIgnoreCase(name.trim()); 
      }
    
      public String syaHello() {
        return “hello 我是厂商A”;
      }
    }

    在A厂商提供的jar包中的META-INF/services/com.example.Spi文件内容为:

    com.a.example.SpiAImpl #厂商A的spi实现全路径类名

    B厂商提供实现

    package com.b.example;
    
    public class SpiBImpl implements Spi {
    
        public boolean isSupport(String name) {
            return"SPIB".equalsIgnoreCase(name.trim()); 
        }
    
        public String syaHello() {
          return “hello 我是厂商B”;
        }
    }    

    在B厂商提供的jar包中的META-INF/services/com.example.Spi文件内容为:

    com.b.example.SpiBImpl #厂商B的spi实现全路径类名

    ServiceLoader.load(Spi.class)读取厂商A、B提供jar包中的文件,ServiceLoader实现了Iterable接口可通过while for循环语句遍历出所有实现。

    一个接口多种实现,就如策略模式一样提供了策略的实现,但是没有提供策略的选择, 使用方可以根据isSupport方法根据业务传入厂商名来选择具体的厂商。

    public class SpiFactory {
    
           //读取配置获取所有实现
           privatestatic ServiceLoader spiLoader = ServiceLoader.load(Spi.class);
    
           //根据名字选取对应实现
           publicstatic Spi getSpi(String name) {
                  for(Spi spi : spiLoader) {
                         if(spi.isSupport(name) ) {
                                returnspi;
                         }
                  }
                  return null;
          }
    }

    但是dubbo也用了spi思想,不过没有用jdk的spi机制,是自己实现的一套spi机制。

    Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();

    Protocol接口,dubbo要判断一下,在系统运行的时候,应该选用这个Protocol接口的哪个实现类来实例化对象来使用呢?

    他会去找一个你配置的Protocol,他就会将你配置的Protocol实现类,加载到jvm中来,然后实例化对象,就用你的那个Protocol实现类就可以了

    微内核,可插拔,大量的组件,Protocol负责rpc调用的东西,你可以实现自己的rpc调用组件,实现Protocol接口,给自己的一个实现类即可。

    这行代码就是dubbo里大量使用的,就是对很多组件,都是保留一个接口和多个实现,然后在系统运行的时候动态根据配置去找到对应的实现类。如果你没配置,那就走默认的实现好了,没问题。

    @SPI("dubbo")  
    public interface Protocol {  
          
        int getDefaultPort();  
      
        @Adaptive  
        <T> Exporter<T> export(Invoker<T> invoker) throws RpcException;  
      
        @Adaptive  
        <T> Invoker<T> refer(Class<T> type, URL url) throws RpcException;  
    
        void destroy();  
      
    }  

    在dubbo自己的jar里,在/META_INF/dubbo/internal/com.alibaba.dubbo.rpc.Protocol文件中:

    dubbo=com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtocol
    
    http=com.alibaba.dubbo.rpc.protocol.http.HttpProtocol
    
    hessian=com.alibaba.dubbo.rpc.protocol.hessian.HessianProtocol

      所以说,这就看到了dubbo的spi机制默认是怎么玩儿的了,其实就是Protocol接口,@SPI(“dubbo”)说的是,通过SPI机制来提供实现类,实现类是通过dubbo作为默认key去配置文件里找到的,配置文件名称与接口全限定名一样的,通过dubbo作为key可以找到默认的实现了就是com.alibaba.dubbo.rpc.protocol.dubbo.DubboProtocol。

      dubbo的默认网络通信协议,就是dubbo协议,用的DubboProtocol 

      如果想要动态替换掉默认的实现类,需要使用@Adaptive接口,Protocol接口中,有两个方法加了@Adaptive注解,就是说那俩接口会被代理实现。

      啥意思呢?

      比如这个Protocol接口搞了俩@Adaptive注解标注了方法,在运行的时候会针对Protocol生成代理类,这个代理类的那俩方法里面会有代理代码,代理代码会在运行的时候动态根据url中的protocol来获取那个key,默认是dubbo,你也可以自己指定,你如果指定了别的key,那么就会获取别的实现类的实例了。

      通过这个url中的参数不通,就可以控制动态使用不同的组件实现类

      好吧,那下面来说说怎么来自己扩展dubbo中的组件

      自己写个工程,要是那种可以打成jar包的,里面的src/main/resources目录下,搞一个META-INF/services,里面放个文件叫:com.alibaba.dubbo.rpc.Protocol,文件里搞一个my=com.zhss.MyProtocol。自己把jar弄到nexus私服里去。

      然后自己搞一个dubbo provider工程,在这个工程里面依赖你自己搞的那个jar,然后在spring配置文件里给个配置:

      <dubbo:protocol name=”my” port=”20000” />

      这个时候provider启动的时候,就会加载到我们jar包里的my=com.zhss.MyProtocol这行配置里,接着会根据你的配置使用你定义好的MyProtocol了,这个就是简单说明一下,你通过上述方式,可以替换掉大量的dubbo内部的组件,就是扔个你自己的jar包,然后配置一下即可。

      dubbo里面提供了大量的类似上面的扩展点,就是说,你如果要扩展一个东西,只要自己写个jar,让你的consumer或者是provider工程,依赖你的那个jar,在你的jar里指定目录下配置好接口名称对应的文件,里面通过key=实现类。

      然后对对应的组件,用类似<dubbo:protocol>用你的哪个key对应的实现类来实现某个接口,你可以自己去扩展dubbo的各种功能,提供你自己的实现。

    Zookeeper

    (1)Zookeeper都有哪些使用场景?

    (1)分布式协调:这个其实是zk很经典的一个用法,简单来说,就好比,你A系统发送个请求到mq,然后B消息消费之后处理了。那A系统如何知道B系统的处理结果?用zk就可以实现分布式系统之间的协调工作。A系统发送请求之后可以在zk上对某个节点的值注册个监听器,一旦B系统处理完了就修改zk那个节点的值,A立马就可以收到通知,完美解决。

    (2)分布式锁:对某一个数据连续发出两个修改操作,两台机器同时收到了请求,但是只能一台机器先执行另外一个机器再执行。那么此时就可以使用zk分布式锁,一个机器接收到了请求之后先获取zk上的一把分布式锁,就是可以去创建一个znode,接着执行操作;然后另外一个机器也尝试去创建那个znode,结果发现自己创建不了,因为被别人创建了。。。。那只能等着,等第一个机器执行完了自己再执行。

    (3)元数据/配置信息管理:zk可以用作很多系统的配置信息的管理,比如kafka、storm等等很多分布式系统都会选用zk来做一些元数据、配置信息的管理,包括dubbo注册中心不也支持zk么

    (4)HA高可用性:这个应该是很常见的,比如hadoop、hdfs、yarn等很多大数据系统,都选择基于zk来开发HA高可用机制,就是一个重要进程一般会做主备两个,主进程挂了立马通过zk感知到切换到备用进程

    (2)redis分布式锁和zk分布式锁的对比

    redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能

    zk分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小

    另外一点就是,如果是redis获取锁的那个客户端bug了或者挂了,那么只能等待超时时间之后才能释放锁;而zk的话,因为创建的是临时znode,只要客户端挂了,znode就没了,此时就自动释放锁

    redis分布式锁大家每发现好麻烦吗?遍历上锁,计算时间等等。。。zk的分布式锁语义清晰实现简单

    所以先不分析太多的东西,就说这两点,我个人实践认为zk的分布式锁比redis的分布式锁牢靠、而且模型简单易用

    高并发

    (1)如何设计一个高并发系统?

    1)系统拆分,将一个系统拆分为多个子系统,用dubbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,不也可以抗高并发么。

    2)缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考虑考虑你的项目里,那些承载主要请求的读场景,怎么用缓存来抗高并发。

    3)MQ,必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,你要是用redis来承载写那肯定不行,人家是缓存,数据随时就被LRU了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的,这个之前还特意说过。

    4)分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

    5)读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

    6)Elasticsearch,可以考虑用es。es是分布式的,可以随便扩容,分布式天然就可以支撑高并发,因为动不动就可以扩容加机器来抗更高的并发。那么一些比较简单的查询、统计类的操作,可以考虑用es来承载,还有一些全文搜索类的操作,也可以考虑用es来承载。

    (2)MySQL主从复制原理的是啥?

      主库将变更写binlog日志,然后从库连接到主库之后,从库有一个IO线程,将主库的binlog日志拷贝到自己本地,写入一个中继日志中。接着从库中有一个SQL线程会从中继日志读取binlog,然后执行binlog日志中的内容,也就是在自己本地再次执行一遍SQL,这样就可以保证自己跟主库的数据是一样的。

      这里有一个非常重要的一点,就是从库同步主库数据的过程是串行化的,也就是说主库上并行的操作,在从库上会串行执行。所以这就是一个非常重要的点了,由于从库从主库拷贝日志以及串行执行SQL的特点,在高并发场景下,从库的数据一定会比主库慢一些,是有延时的。所以经常出现,刚写入主库的数据可能是读不到的,要过几十毫秒,甚至几百毫秒才能读取到。

      而且这里还有另外一个问题,就是如果主库突然宕机,然后恰好数据还没同步到从库,那么有些数据可能在从库上是没有的,有些数据可能就丢失了。

      所以mysql实际上在这一块有两个机制,一个是半同步复制,用来解决主库数据丢失问题;一个是并行复制,用来解决主从同步延时问题。

      这个所谓半同步复制,semi-sync复制,指的就是主库写入binlog日志之后,就会将强制此时立即将数据同步到从库,从库将日志写入自己本地的relay log之后,接着会返回一个ack给主库,主库接收到至少一个从库的ack之后才会认为写操作完成了。

      所谓并行复制,指的是从库开启多个线程,并行读取relay log中不同库的日志,然后并行重放不同库的日志,这是库级别的并行。

        1)主从复制的原理

        2)主从延迟问题产生的原因

        3)主从复制的数据丢失问题,以及半同步复制的原理

        4)并行复制的原理,多库并发重放relay日志,缓解主从延迟问题

    (3)mysql主从同步延时问题(精华)

    线上确实处理过因为主从同步延时问题,导致的线上的bug,小型的生产事故

    show status,Seconds_Behind_Master,你可以看到从库复制主库的数据落后了几ms

    其实这块东西我们经常会碰到,就比如说用了mysql主从架构之后,可能会发现,刚写入库的数据结果没查到,结果就完蛋了。。。。

    所以实际上你要考虑好应该在什么场景下来用这个mysql主从同步,建议是一般在读远远多于写,而且读的时候一般对数据时效性要求没那么高的时候,用mysql主从同步

    所以这个时候,我们可以考虑的一个事情就是,你可以用mysql的并行复制,但是问题是那是库级别的并行,所以有时候作用不是很大

    所以这个时候。。通常来说,我们会对于那种写了之后立马就要保证可以查到的场景,采用强制读主库的方式,这样就可以保证你肯定的可以读到数据了吧。其实用一些数据库中间件是没问题的。

    一般来说,如果主从延迟较为严重

      1、分库,将一个主库拆分为4个主库,每个主库的写并发就500/s,此时主从延迟可以忽略不计

      2、打开mysql支持的并行复制,多个库并行复制,如果说某个库的写入并发就是特别高,单库写并发达到了2000/s,并行复制还是没意义。28法则,很多时候比如说,就是少数的几个订单表,写入了2000/s,其他几十个表10/s。

      3、重写代码,写代码的同学,要慎重,当时我们其实短期是让那个同学重写了一下代码,插入数据之后,直接就更新,不要查询

      如果确实是存在必须先插入,立马要求就查询到,然后立马就要反过来执行一些操作,对这个查询设置直连主库。不推荐这种方法,你这么搞导致读写分离的意义就丧失了

  • 相关阅读:
    tensorflow结果可视化-【老鱼学tensorflow】
    tensorflow建造神经网络-【老鱼学tensorflow】
    tensorflow添加层-【老鱼学tensorflow】
    tensorflow激励函数-【老鱼学tensorflow】
    tensorflow 传入值-【老鱼学tensorflow】
    tensorflow变量-【老鱼学tensorflow】
    tensorflow会话控制-【老鱼学tensorflow】
    Android 代码判断是否有网络
    Android Toast 工具类
    Android 菊花加载工具类
  • 原文地址:https://www.cnblogs.com/myseries/p/12459614.html
Copyright © 2020-2023  润新知