• 跟我学算法-tensorflow 实现卷积神经网络


    我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层

    我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 

    第一次卷积采用64个filter, 第二次卷积采用128个filter,池化层的大小为2*2,我们采用的是两次全连接

    第一步:导入数据

    import numpy as np
    import  tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('data/', one_hot=True)

    第二步: 初始化函数

    # 构造初始化参数, 方差为0.1
    n_input = 784
    n_output = 10
    weights = {
        'wc1' : tf.Variable(tf.truncated_normal([3, 3, 1, 64], stddev=0.1)),
        'wc2' : tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1)),
        'wd1' : tf.Variable(tf.truncated_normal([7*7*128, 1024], stddev=0.1)),
        'wd2' : tf.Variable(tf.truncated_normal([1024, n_output], stddev=0.1))
    
    }
    
    biases = {
        'b1' : tf.Variable(tf.truncated_normal([64], stddev=0.1)),
        'b2' : tf.Variable(tf.truncated_normal([128], stddev=0.1)),
        'bd1' : tf.Variable(tf.truncated_normal([1024], stddev=0.1)),
        'bd2' : tf.Variable(tf.truncated_normal([n_output], stddev=0.1))
    
    }

    第三步: 构造前向传播卷积函数,两次卷积,两次池化,两次全连接

    def conv_basic(_input, _w, _b, _keepratio):
    
        _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
        #进行卷积操作
        _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
        # 使用激活函数
        _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        # 进行池化操作, padding='SAME', 表示维度不足就补齐
        _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME')
        #去除一部分数据
        _pool1_dr1 = tf.nn.dropout(_pool1, _keepratio)
        #第二次卷积操作
        _conv2 = tf.nn.conv2d(_pool1_dr1, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
        # 使用激活函数
        _conv2 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        # 进行池化操作
        _pool2 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME')
        _pool_dr2 = tf.nn.dropout(_pool1, _keepratio)
    
        # 第一次全连接操作
        # 对_pool_dr2 根据wd1重新构造函数
        _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
        _fcl = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1'], _b['bd1'])))
        _fc_dr1 = tf.nn.dropout(_fcl, _keepratio)
        # 第二次全连接
        _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
        out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
               'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
               'fcl': _fcl, 'fc_dr1': _fc_dr1, 'out': _out
               }
        return out

    第四步: 构造cost函数,和准确值函数

    
    
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_output])
    keepratio = tf.placeholder(tf.float32)

    #
    构造cost函数 #获得预测结果 _pred =conv_basic(x, weights, biases, keepratio)['out'] # 输入预测结果与真实值构造cost 函数 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) # 优化函数使得cost最小 optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) # 计算准确率 _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(_corr, tf.float32))

    第五步: 训练模型,降低cost,提升精度

    init = tf.global_variables_initializer()
    
    # 进行训练
    sess = tf.Session()
    sess.run(init)
    #迭代次数
    training_epochs = 15
    # 每次训练的样本数
    batch_size      = 16
    #循环打印的次数
    display_step    = 1
    for epoch in range(training_epochs):
        avg_cost = 0.
        #total_batch = int(mnist.train.num_examples/batch_size)
        total_batch = 10
        # Loop over all batches
        for i in range(total_batch):
            # 提取训练数据和标签
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            #训练模型优化参数
            sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
            # 加和损失值
            avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch
    
        # Display logs per epoch step
        if epoch % display_step == 0:
            print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
            train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
            print (" Training accuracy: %.3f" % (train_acc))
            #test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
            #print (" Test accuracy: %.3f" % (test_acc))
    
    print ("OPTIMIZATION FINISHED")
  • 相关阅读:
    VC 使用json cpp 静态库 问题解决
    <转>c++ builder JSONCPP 注意事项 XE2 解决编译问题 _Mfl
    窥探try ... catch与__try ... __except的区别
    二叉树与其它树
    《DirectX 9.0 3D游戏开发编程基础》 第二章 绘制流水线 读书笔记
    《DirectX 9.0 3D游戏开发编程基础》 第一章 初始化Direct3D 读书笔记
    《DirectX 9.0 3D游戏开发编程基础》必备的数学知识 读书笔记
    windows lua 多线程 线程同步
    <转>多线程中的lua同步问题
    php 检查email电子邮件函数(奇葩写法)
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/9569757.html
Copyright © 2020-2023  润新知