• RGB-D显著性突出物体(学习)


    论文阅读:Adaptive Fusion for RGB-D Salient Object Detection

    这篇代码的创新点在于使用了SW层,使用SW_logits * img_logits + (1 - SW_logits) * (1 - depth_logits) 来获得最终的预测结果

    另外一个关键点是使用了3种loss损失值

    第一种损失值,即经过归一化的标签g_t 与 输出的结果logits的sigmoid的损失值

    第二种损失值, 即将im_logits进行sigmoid转换为0, 1之间,然后使用sigmoid_im * label + (1 - sigmoid_im) * (1 - label) # 获得标签值与图片值的交叉熵损失值

    将计算好的交叉熵损失函数与SW_map 计算-log的交叉熵损失函数,个人认为这个loss存在问题

    第三种损失值,即edge_loss即边界的损失值

    将预测的结果进行sigmoid操作,转换为(0, 1)

    使用tf.reshape(tf.constant([-1, 0, 1], tf.float32), [1, 3, 1, 1]) 构造x方向的边界卷积

    使用tf.reshape(x_weight, [3, 1, 1, 1]) # 构造y方向的边界卷积

    使用tf.nn.conv2d(g_t,  x_weight, [1, 1, 1, 1], 'SAME') 进行标签的x轴方向和y轴方向上的边界卷积

    使用tf.nn.conv2d(sigmoid_p, x_weight, [1, 1, 1, 1], 'SAME') 进行预测结果的x轴方向和y轴方向上的边界卷积

    最后使用tf.losses.mean_squre_error(xgrad_gt, xgrad_sal) + tf.losses.mean_squre_error(ygrad_gt, ygrad_sal) 获得最终的mse损失函数

    论文中的网络结构图

     run_saliency.py 用于执行代码

    from __future__ import print_function
    import tensorflow as tf
    import numpy as np
    import scipy.misc as misc
    import os
    import cv2
    from net import *
    from loss import *
    
    
    
    FLAGS = tf.flags.FLAGS
    tf.flags.DEFINE_string('data_dir', './data/', 'path to dataset')
    tf.flags.DEFINE_string('ckpt_file', './model/AF-Net', 'checkpoint file')
    tf.flags.DEFINE_string('save_dir', './result', 'path to prediction direction')
    tf.flags.DEFINE_string('train_data', './train_data/', 'path to train_data')
    IMAGE_SIZE = 224
    BATCH_SIZE = 1
    train_num = 1500
    num_epoch = 1000
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    def _transform(filename, _channels=True):
        image = misc.imread(filename)
        if _channels and len(image.shape) < 3:
            image = np.array([image for _ in range(3)])
    
        resize_image = misc.imresize(image, [IMAGE_SIZE, IMAGE_SIZE], interp='nearest')
        return image
    
    
    def main(argv=None, is_training=True):
        image = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], name='input_image')
        depth_2 = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE], name='input_depth')
        depth = tf.expand_dims(depth_2, axis=3)
        processed_image = image - [123.64, 116.779, 103.939]  # 减去最后一个维度的均值
        gt_2 = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE], name='label')
        gt = tf.expand_dims(gt_2, axis=3)
        net_handler = NetHandler()
        logits, im_logits, SW_map = net_handler.RGBD_SW_net(processed_image, depth)
        pred_annotation = tf.sigmoid(logits)  # 将其转换为0, 1
        # 构造sal损失值
        loss_sal = sigmoid_CEloss(logits, gt)
        # 构造SW损失值
        loss_sw = SW_loss(im_logits, SW_map, gt)
        # 计算边缘损失值
        loss_edge = edge_loss(logits, gt)
        # 计算总的损失值loss
        loss = loss_sal + loss_sw + loss_edge
        # 构造损失值的优化器
        train_op = tf.train.AdamOptimizer(1e-6, beta1=0.5).minimize(loss)
        # 构造执行函数
        sess = tf.Session()
        # 变量初始化
        sess.run(tf.global_variables_initializer())
        # 打印保存的参数的地址
        print('Rreading params from {}'.format(FLAGS.ckpt_file))
        # 如果已经保存了参数就加载
        if tf.train.get_checkpoint_state('model'):
            saver = tf.train.Saver(None)
            saver.restore(sess, FLAGS.ckpt_file)
        # 进行图片结果的保存
        if not os.path.exists(FLAGS.save_dir):
            os.makedirs(FLAGS.save_dir)
    
        if is_training == False:
            files = os.listdir(os.path.join(FLAGS.data_dir + '/RGB/'))
            test_num = len(files)
            test_RGB = np.array([_transform(os.path.join(FLAGS.data_dir + '/RGB/' + filename), _channels=True) for filename in files])
            # 这里是不对的
            test_depth = np.array([np.expand_dims(_transform(os.path.join(FLAGS.data_dir + '/depth/' + filename), _channels=True) for filename in files)])
    
            # 进行测试操作
            for k in range(test_num):
                # 进行结果的预测,这里结果的范围为0,1之间
                test_prediction = sess.run(pred_annotation, feed_dict={image:test_RGB[k], depth:test_depth[k]})
    
                test_origin_RGB = misc.imread(os.path.join(FLAGS.data_dir + '/RGB/' + files[k].split('.')[0] + '.jpg'))
                image_shape = test_origin_RGB.shape
                # 将图片转换为原来的图片的大小
                test_pred = misc.imresize(test_prediction[0, :, :, 0], image_shape, interp='bilinear')
                misc.imsave('{}/{}'.format(FLAGS.save_dir, files[k].split('.')[0] + '.jpg'), test_pred.astype(np.uint8))
    
            print('Save results in to %s' % (FLAGS.save_dir))
    
        else:
            iter = 0
            for epoch in range(num_epoch):
                # 载入数据
                for i in range(train_num // BATCH_SIZE):
    
                    deep_img, GT_image, Img_img = read_data_some('train_data.npy', BATCH_SIZE)
                    _, _loss = sess.run([train_op, loss], feed_dict={image:Img_img, depth_2:deep_img, gt_2:GT_image})
                    if iter % 100 == 0 and iter != 0:
                        print('iter', iter, 'loss', _loss)
    
                    saver = tf.train.Saver()
                    if epoch % 10 == 0:
                        saver.save(sess, FLAGS.ckpt_file, write_meta_graph=FLAGS)
                        test_deep, test_GT, test_RGB = read_data_some('test_data.npy', 1)
                        test_prediction = sess.run(pred_annotation, feed_dict={image:test_RGB, depth_2:test_deep, gt_2:test_GT})
    
                        # 进行图片保存
                        cv2.imwrite('train_result/deep.png', test_deep)
                        cv2.imwrite('train_result/GT.png', test_GT)
                        cv2.imwrite('train_result/RGB.png', test_RGB)
                        cv2.imwrite('train_result/pred.png', test_prediction)
    
    
                    iter += 1
    
    
    if __name__ == '__main__':
        tf.app.run()

    net.py 网络结构

    import tensorflow as tf
    import tensorflow.contrib.slim as slim
    
    
    
    class NetHandler(object):
        def __int__(self,
                    weights_initializer = tf.contrib.layers.xavier_initializer(),
                    weight_decay = 0.0001,
                    padding='SAME'):
            self.padding = padding
            self.weight_initializer = weights_initializer
            self.weight_decay = weight_decay
    
        def vgg16_net(self, inputs, depth_suf = ''):
            layers = (
                'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
    
                'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
    
                'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
                'relu3_3', 'pool3',
    
                'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3',
                'pool4',
    
                'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
                'pool5'
            )
    
            kernel_size  =  3
            num_outputs = 64
            net = {}
            current = inputs # 当前输入
            for i, name in enumerate(layers):
                if depth_suf == '_d' and i == 0:
                    current = slim.conv2d(current, 64, [3, 3],
                                          weights_initializer=self.weight_initializer,
                                          padding=self.padding,
                                          stride=1,
                                          activation_fn=None)
                    net[name] = current
                    continue
    
                kind = name[:4]
                if kind == 'conv':
                    if name[:5] == 'conv1':
                        num_outputs = 64 # 构造第一个卷积的输出fiter
                    elif name[:5] == 'conv2':
                        num_outputs = 128
                    elif name[:5] == 'conv3':
                        num_outputs = 256
                    elif name[:5] == 'conv4':
                        num_outputs = 512
                    elif name[:5] == 'conv5':
                        num_outputs = 512
    
                    _, _, _, c = current.get_shape()
                    kernels = tf.get_variable(name=name + '_w' + depth_suf, shape=[kernel_size, kernel_size, c, num_outputs],
    
                                              initializer=self.weight_initializer,
                                              regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
                                              trainable=True)
                    _, _, _, bias_size = kernels.get_shape()
                    bias = tf.get_variable(name=name + '_b' + depth_suf, shape=[bias_size],
                                           initializer=tf.zeros_initializer(),
                                           trainable=True)
                    conv = tf.nn.conv2d(current, kernels, strides=[1, 1, 1, 1], padding=self.padding)
                    current = tf.nn.bias_add(conv, bias)
    
                elif kind == 'relu':
                    current = tf.nn.relu(current, name=name)
    
                elif kind == 'pool':
                    current = tf.nn.max_pool(current, kernel_size=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=self.padding)
                net[name] = current
    
            return net
    
    
    
    
    
    
    
        def RGBD_SW_net(self, image, depth):
            image_net = self.vgg16_net(image)
            depth_net = self.vgg16_net(depth, depth_suf='_d')
            conv_5 = image_net['relu5_3']   # 获得第一层到最后一层卷积的结果
            conv_4 = image_net['relu4_3']
            conv_3 = image_net['relu3_3']
            conv_2 = image_net['relu2_2']
            conv_1 = image_net['relu1_2']
    
            depth_5 = depth_net['relu5_3']
            depth_4 = depth_net['relu4_3']
            depth_3 = depth_net['relu3_3']
            depth_2 = depth_net['relu2_2']
            depth_1 = depth_net['relu1_2']
    
            with slim.arg_scope([slim.conv2d],
                                weights_initializer=self.weight_initializer,
                                weight_regularizer=slim.l2_regularizer(self.weight_decay),
                                padding=self.padding,
                                stride=1,
                                activation_fn=tf.nn.relu):
                conv5 = slim.repeat(conv_5, 2, slim.conv2d, 64, [3, 3], scope='conv5')  # 2表示进行了两次的卷积操作
                conv4 = slim.repeat(conv_4, 2, slim.conv2d, 64, [3, 3], scope='conv4')  # 进行两次卷积
                conv3 = slim.repeat(conv_3, 2, slim.conv2d, 64, [3, 3], scope='conv3')  #
                conv2 = slim.repeat(conv_2, 2, slim.conv2d, 64, [3, 3], scope='conv2')
                conv1 = slim.repeat(conv_1, 2, slim.conv2d, 64, [3, 3], scope='conv1')
    
                depth5 = slim.repeat(depth_5, 2, slim.conv2d, 64, [3, 3], scope='depth5')
                depth4 = slim.repeat(depth_4, 2, slim.conv2d, 64, [3, 3], scope='depth4')
                depth3 = slim.repeat(depth_3, 2, slim.conv2d, 64, [3, 3], scope='depth3')
                depth2 = slim.repeat(depth_2, 2, slim.conv2d, 64, [3, 3], scope='depth2')
                depth1 = slim.repeat(depth_1, 2, slim.conv2d, 64, [3, 3], scope='depth1')
    
                conv5_up = tf.image.resize_images(conv5, [224, 224])
                conv4_up = tf.image.resize_images(conv4, [224, 224])
                conv3_up = tf.image.resize_images(conv3, [224, 224])
                conv2_up = tf.image.resize_images(conv2, [224, 224])
    
                depth5_up = tf.image.resize_images(depth5, [224, 224])
                depth4_up = tf.image.resize_images(depth4, [224, 224])
                depth3_up = tf.image.resize_images(depth3, [224, 224])
                depth2_up = tf.image.resize_images(depth2, [224, 224])
                # 将卷积层进行维度变化,卷积后的结果输入到下一层
                concat4_im = tf.concat([conv5_up, conv4_up], 3)
                feat4_im = slim.conv2d(concat4_im, 64, [3, 3], scope='feat4_im')
                concat3_im = tf.concat([feat4_im, conv3_up], 3)
                feat3_im = slim.conv2d(concat3_im, 64, [3, 3], scope='feat3_im')
                concat2_im = tf.concat([feat3_im, conv2_up], 3)
                feat2_im = slim.conv2d(concat2_im, 64, [3, 3], scope='feat2_im')
                concat1_im = tf.concat([feat2_im, conv1], 3)
                feat1_im = slim.conv2d(concat1_im, 64, [3, 3], scope='feat1_im')
    #           # 同理对深度图做相同的操作
    
                concat4_d = tf.concat([depth4_up, depth5_up], 3)
                feat4_d = slim.conv2d(concat4_d, 64, [3, 3], scope='feat4_d')
                concat3_d = tf.concat([feat4_d, depth3])
                feat3_d = slim.conv2d(concat3_d, 64, [3, 3], scope='feat3_d')
                concat2_d = tf.concat([feat3_d, depth2])
                feat2_d = slim.conv2d(concat2_d, 64, [3, 3], scope='feat2_d')
                concat1_d = tf.concat([feat2_d, depth])
                feat1_d = slim.conv2d(concat1_d, 64, [3, 3], scope='feat1_d')
    
                # 进行1*1的卷积, 时期维度变化为1
                conv1_im_logits = slim.conv2d(feat1_im, 1, [1, 1], activation_fn=None, scope='conv1_im_logits')
                conv1_d_logits = slim.conv2d(feat1_d, 1, [1, 1], activation_fn=None, scope='conv1_d_logits')
                # 将图像卷积图与深度卷积图合并
                feat1 = slim.conv2d(tf.concat([feat1_im, feat1_d], 3), 64, [3, 3], scope='feat1')
                SW_map = tf.nn.sigmoid(slim.conv2d(feat1, 1, [1, 1], activation_fn=None, scope='feat1_attn'))
    
                conv1_fused_logits = SW_map * conv1_im_logits + (1 - SW_map) * conv1_d_logits
    
                return conv1_fused_logits, conv1_im_logits, SW_map

    loss.py 定义的损失值

    import tensorflow as tf
    
    def sigmoid_CEloss(logits, gt):
        loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.cast(gt, tf.float32))
        )
    
    def SW_loss(im_logits, SW_map, gt):
    
        label = tf.cast(gt, tf.float32)
        sigmoid_im = tf.nn.sigmoid(im_logits)
        SW_gt = label * sigmoid_im + (1 - label) * (1 - sigmoid_im)
        cost = -SW_gt * tf.log(tf.clip_by_value(SW_map, 1e-8, 1.0)) 
                - (1 - SW_gt) * tf.log(tf.clip_by_value(1 - SW_map, 1e-8, 1.0))
    
        return tf.reduce_mean(cost)
    
    
    # 边缘轮廓的损失值
    def edge_loss(logits, gt):
        gt = tf.cast(gt, tf.float32)
        sigmoid_p = tf.nn.sigmoid(logits)
        x_weight = tf.reshape(tf.constant([-1, 0, +1], tf.float32), [1, 3, 1, 1]) # 构造了一个卷积核
        y_weight = tf.reshape(x_weight, [3, 1, 1, 1])  # 构造了卷积核
        # 获得其标签边缘的梯度值,获得x边缘的损失值
        xgrad_gt = tf.nn.conv2d(gt, x_weight, [1, 1, 1, 1], 'SAME')
        ygrad_gt = tf.nn.conv2d(gt, y_weight, [1, 1, 1, 1], 'SAME')
        # 获得输出结果的边缘梯度值
        xgrad_sal = tf.nn.conv2d(sigmoid_p, x_weight, [1, 1, 1, 1], 'SAME')
        ygrad_sal = tf.nn.conv2d(sigmoid_p, y_weight, [1, 1, 1, 1], 'SAME')
        # 计算平方根误差
        loss = tf.losses.mean_squared_error(xgrad_gt, xgrad_sal) + tf.losses.mean_squared_error(ygrad_gt, ygrad_sal)
    
        return loss

    read_data 读取一个batch_size的数据

    import numpy as np
    import cv2
    
    
    def read_data_some(path, bacth_size):
    
        data = np.array(np.load('npy/' + path))
        num = len(data)
        indx = np.random.randint(0, num, bacth_size)
        deep_img, GT_img, Img_imgs = data[indx][:, 0], data[indx][:, 1], data[indx][:, 2]
        deep_imgs = []
        GT_imgs = []
        for i in range(bacth_size):
            deep_imgs.append(cv2.cvtColor(deep_img[i], cv2.COLOR_BGR2GRAY))
            GT_imgs.append(cv2.cvtColor(GT_img[i], cv2.COLOR_BGR2GRAY))
    
    
        return deep_imgs, GT_imgs, Img_imgs
    
    
    if __name__ == '__main__':
    
        read_train_data(64)

    save_data 保存数据为.npy

    import random
    import os
    import cv2
    import numpy as np
    import glob
    
    
    
    def save_data(path):
    
        data = []
    
        for root, dirs, files in os.walk(path):
            if len(dirs) != 0:
    
                file_names = glob.glob(path + dirs[0] + '/*.png')
                for deep_name in file_names:
                    GT_name = deep_name.replace('deep', 'GT')
                    Img_name = deep_name.replace('deep', 'Img').replace('png', 'jpg')
                    # 图片的读取
                    deep_img = cv2.imread(deep_name)
                    deep_img = cv2.resize(deep_img, (224, 224))
                    GT_img = cv2.imread(GT_name)
                    GT_img = cv2.resize(GT_img, (224, 224))
                    Img_img = cv2.imread(Img_name)
                    Img_img = cv2.resize(Img_img, (224, 224))
                    data.append((deep_img, GT_img, Img_img))
    
        # 进行数据的清洗
        random.shuffle(data)
    
    
        np.save('npy/' + path[:-1] + '.npy', data)
  • 相关阅读:
    你绝对想不到R文件找不到(cannot resolve symbol R)的原因
    你绝对想不到R文件找不到(cannot resolve symbol R)的原因
    如何安装gulp
    简单实现IE9及以下对placeholder的兼容性
    vue 新闻列表滚动效果
    2018数据技术嘉年华-金融峰会·重庆站即将起航!
    高手过招:用SQL解决环环相扣的刑侦推理问题(罗海雄版本)
    实战课堂:为什么更换存储之后一切正常但RAC集群启动不了?
    MySql避免重复插入记录方法(ignore,Replace,ON DUPLICATE KEY UPDATE)
    Druid数据库连接池和Druid内置监控系统简单介绍
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/10817205.html
Copyright © 2020-2023  润新知