• matplotlib1


    import pandas as pd
    unrate=pd.read_csv("unrate.csv")
    unrate['DATE']=pd.to_datetime(unrate['DATE'])
    print(unrate.head(12))
    
    >>>
             DATE  VALUE
    0  1948-01-01    3.4
    1  1948-02-01    3.8
    2  1948-03-01    4.0
    3  1948-04-01    3.9
    4  1948-05-01    3.5
    5  1948-06-01    3.6
    6  1948-07-01    3.6
    7  1948-08-01    3.9
    8  1948-09-01    3.8
    9  1948-10-01    3.7
    10 1948-11-01    3.8
    11 1948-12-01    4.0
    读文件
    import matplotlib.pyplot as plt
    plt.plot()#画图
    plt.show()#将画的图显示出来
    
    >>>

    first_year=unrate[0:12]
    plt.plot(first_year['DATE'],first_year['VALUE'])#横轴为'DATE',纵轴为'VALUE'
    plt.show()

    import matplotlib.pyplot as plt
    first_year=unrate[0:12:1]
    plt.plot(first_year['DATE'],first_year['VALUE'])
    plt.xticks(rotation=30) #横坐标倾斜30度
    plt.show()

    plt.plot(first_year['DATE'], first_year['VALUE'])
    plt.xticks(rotation=90)
    plt.xlabel('Month')#横轴标题
    plt.ylabel('Unemployment Rate')#纵轴标题
    plt.title('Monthly Unemployment Trends, 1948')#图形标题
    plt.show()

    import matplotlib.pyplot as plt
    fig=plt.figure()
    ax1=fig.add_subplot(2,2,1)#2行2列第一幅图
    ax2=fig.add_subplot(2,2,2)#2行2列第二幅图
    ax3=fig.add_subplot(2,2,4)#2行2列第四幅图
    plt.show()

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    fig=plt.figure(figsize=(6,6))#图尺寸
    ax1=fig.add_subplot(2,2,1)#2行2列第一幅图
    ax2=fig.add_subplot(2,2,3)#2行2列第三幅图
    ax1.plot(np.random.randint(1,5,5), np.arange(5))#随机生成数字
    ax2.plot(np.arange(5))
    plt.show()

    fig = plt.figure(figsize=(6,3))
    
    plt.plot(unrate[0:12]['DATE'], unrate[0:12]['VALUE'], c='red')#前12个数据为红色
    plt.plot(unrate[12:24]['DATE'], unrate[12:24]['VALUE'], c='blue')#后12个数据为蓝色
    
    plt.show()

    unrate['MONTH'] = unrate['DATE'].dt.month# 也可以将'DATE'转换为数字月份
    
    fig = plt.figure(figsize=(6,3))
    
    plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='red')
    plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue')
    
    plt.show()

    import pandas as pd
    import matplotlib.pyplot as plt
    
    unrate = pd.read_csv('unrate.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    unrate['MONTH'] = unrate['DATE'].dt.month
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i])
        
    plt.show()

    import pandas as pd
    import matplotlib.pyplot as plt
    
    unrate = pd.read_csv('unrate.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    unrate['MONTH'] = unrate['DATE'].dt.month
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        plt.plot(subset['DATE'], subset['VALUE'], c=colors[i])  #DATE
        
    plt.show()

    import pandas as pd
    import matplotlib.pyplot as plt
    
    unrate = pd.read_csv('unrate.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    unrate['MONTH'] = unrate['DATE'].dt.month
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        label=str(1948+i)   #方法二label=1948+i
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i],label=label)  #MONTH
    plt.legend(loc="best")   #plt.legend(loc=1)
    
    
    plt.show()

    import pandas as pd
    import matplotlib.pyplot as plt
    
    unrate = pd.read_csv('unrate.csv')
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    unrate['MONTH'] = unrate['DATE'].dt.month
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        label=str(1948+i)
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i],label=label)  #MONTH
    plt.legend(loc="best")
    plt.xlabel("Month, Integer")
    plt.ylabel('Unemployment Rate, Percent')
    plt.title('Monthly Unemployment Trends, 1948-1952')
    
    plt.show()

  • 相关阅读:
    Android开发之Sqlite的使用
    ZOJ 3607 Lazier Salesgirl
    ZOJ 3769 Diablo III
    ZOJ 2856 Happy Life
    Ural 1119 Metro
    Ural 1146 Maximum Sum
    HDU 1003 Max Sum
    HDU 1160 FatMouse's Speed
    Ural 1073 Square Country
    Ural 1260 Nudnik Photographer
  • 原文地址:https://www.cnblogs.com/muziyi/p/9045111.html
Copyright © 2020-2023  润新知