• 拓扑排序 java


    import java.util.*;
    /**
    * 拓扑排序:(1)在有向图中选一个没有前驱的顶点且输出之 (2)从图中删除该顶点和所有以它为尾的弧
    * 重复以上两步骤,直至全部顶点均已输出,或者当前图中不存在无前驱的顶点为止。后者说明有向图中有环。
    *
    */
    public class TopologicalTest {
    private static final int V_COUNT = 12;
    public static void main(String[] args) {
    //初始化节点
    Topological topological1 = new Topological("C1", 0, new ArrayList<Topological>());
    Topological topological2 = new Topological("C2", 1, new ArrayList<Topological>());
    Topological topological3 = new Topological("C3", 2, new ArrayList<Topological>());
    Topological topological4 = new Topological("C4", 1, new ArrayList<Topological>());
    Topological topological5 = new Topological("C5", 2, new ArrayList<Topological>());
    Topological topological6 = new Topological("C6", 1, new ArrayList<Topological>());
    Topological topological7 = new Topological("C7", 2, new ArrayList<Topological>());
    Topological topological8 = new Topological("C8", 2, new ArrayList<Topological>());
    Topological topological9 = new Topological("C9", 0, new ArrayList<Topological>());
    Topological topological10 = new Topological("C10", 1, new ArrayList<Topological>());
    Topological topological11 = new Topological("C11", 1, new ArrayList<Topological>());
    Topological topological12 = new Topological("C12", 3, new ArrayList<Topological>());

    //将节点添加后驱
    List<Topological> list = topological1.getTopologicals();
    list.add(topological2);
    list.add(topological4);
    list.add(topological12);
    list.add(topological3);
    topological1.setTopologicals(list);

    list = topological2.getTopologicals();
    list.add(topological3);
    topological2.setTopologicals(list);

    list = topological3.getTopologicals();
    list.add(topological5);
    list.add(topological7);
    list.add(topological8);
    topological3.setTopologicals(list);

    list = topological4.getTopologicals();
    list.add(topological5);
    topological4.setTopologicals(list);

    list = topological5.getTopologicals();
    list.add(topological7);
    topological5.setTopologicals(list);

    list = topological6.getTopologicals();
    list.add(topological8);
    topological6.setTopologicals(list);

    list = topological9.getTopologicals();
    list.add(topological10);
    list.add(topological11);
    list.add(topological12);
    topological9.setTopologicals(list);

    list = topological10.getTopologicals();
    list.add(topological12);
    topological10.setTopologicals(list);

    list = topological11.getTopologicals();
    list.add(topological6);
    topological11.setTopologicals(list);

    //将图中的节点放入列表
    List<Topological> topologicals = new ArrayList<Topological>();
    topologicals.add(topological1);
    topologicals.add(topological2);
    topologicals.add(topological3);
    topologicals.add(topological4);
    topologicals.add(topological5);
    topologicals.add(topological6);
    topologicals.add(topological7);
    topologicals.add(topological8);
    topologicals.add(topological9);
    topologicals.add(topological10);
    topologicals.add(topological11);
    topologicals.add(topological12);

    //定义一个列表来存放入度为零的节点
    List<Topological> topologicalListForReturn = new ArrayList<Topological>();
    int i = 0;
    while(i++ <= V_COUNT) {
    for(Topological each : topologicals) {
    //判断一下是否已经在入度为0的列表中
    //如果是,则返回,判断下一个
    if(topologicalListForReturn.contains(each)) {
    continue;
    }
    if(each.getIndegree() == 0) {
    for(Topological topological : each.getTopologicals()) {
    topological.setIndegree(topological.getIndegree() - 1);
    }
    topologicalListForReturn.add(each);
    break;
    }
    }
    }

    //如果入度为0的节点数少于图总节点数,则存在环
    if(topologicalListForReturn.size() < topologicals.size()) {
    System.out.println("此图存在环");
    }else {
    for(Topological each : topologicalListForReturn) {
    System.out.print(each.getName() + " ");
    }
    }
    }
    }


    总结:入度为0的顶点即为没有前驱的顶点,删除顶点及以它为尾的弧的操作,则可换成以弧头顶点的入度减1来实现。
  • 相关阅读:
    实训-涉及前端的一些小总结
    实训-mybatis-经验总结2
    实训-mybatis-经验总结
    中软实训笔记
    jsp 中JSTL遇到的报错异常
    mysql的小发现
    Maven笔记
    springmvc-3-拦截器
    springmvc 上传图片
    springmvc
  • 原文地址:https://www.cnblogs.com/mucheng/p/5763986.html
Copyright © 2020-2023  润新知