perf概念
perf_event
Perf_events是目前在Linux上使用广泛的profiling/tracing工具,除了本身是内核(kernel)的组成部分以外,还提供了用户空间(user-space)的命令行 工具(“perf”,“perf-record”,“perf-stat”等等)。
perf_events提供两种工作模式:
- 采样模式(sampling)
- 计数模式(counting)
“perf record”命令工作在采样模式:周期性地做事件采样,并把信息记录下来,默认保存在perf.data文件;而“perf stat”命令工作在计数模式:仅仅统计 某个事件发生的次数。
我们经常看到类似这样的命令:“perf record -a ...... sleep 10”。在这里 ,“sleep”这个命令相当于一个“dummy”命令,没有做任何有意义的工作,它的 作用是让“perf record”命令对整个系统进行采样,并在10秒后自动结束采样工作。
perf_event - PMU
Perf_events所处理的hardware event(硬件事件)需要CPU的支持,而目前主 流的CPU基本都包含了PMU(Performance Monitoring Unit,性能监控单元)。PMU用来统计性能相关的参数,像cache命中率,指令周期等等。由于这些统计 工作是硬件完成的,所以CPU开销很小。
以X86体系结构为例,PMU包含了两种MSRs(Model-Specific Registers,之所 以称之为Model-Specific,是因为不同model的CPU,有些register是不同的) :Performance Event Select Registers和Performance Monitoring Counters(PMC)。当想对某种性能事件(performance event)进行统计时,需要对Performance Event Select Register进行设置,统计结果会存在Performance Monitoring Counter中。
当perf_events工作在采样模式(sampling,perf record命令即工作在这种模 式)时,由于采样事件发生时和实际处理采样事件之间有时间上的delay,以及CPU流水线和乱序执行等因素,所以得到的指令地址IP(Instruction Pointer) 并不是当时产生采样事件的IP,这个称之为skid。为了改善这种状况,使IP值 更加准确,Intel使用PEBS(Precise Event-Based Sampling),而AMD则使用IBS(Instruction-Based Sampling)。
以PEBS为例:每次采样事件发生时,会先把采样数据存到一个缓冲区中(PEBS buffer),当缓冲区内容达到某一值时,再一次性处理,这样可以很好地解决skid问题。
执行一下perf list --help命令,会看到下面内容:
The p modifier can be used for specifying how precise the instruction address should be. The p modifier can be specified multiple times:
0 - SAMPLE_IP can have arbitrary skid
1 - SAMPLE_IP must have constant skid
2 - SAMPLE_IP requested to have 0 skid
3 - SAMPLE_IP must have 0 skid
For Intel systems precise event sampling is implemented with PEBS which supports up to precise-level 2.
现在可以理解,经常看到的类似“perf record -e "cpu/mem-loads/pp" -a”命 令中,pp就是指定IP精度的。
系统调用perf_open_event
代表一种事件资源,用户态调用 perf_open_event
即会创建一个与之对应的 perf_event
对象,相应的一些重要数据都会以这个数据结构为维度存放 包含 pmu ctx enabled_time
running_time count 等信息
include/linux/perf_event.h
struct perf_event {
}
./arch/arm64/kernel/perf_event.c
例子
下面我用 ls 命令来演示 sys_enter 这个 tracepoint 的使用:
perf stat -e raw_syscalls:sys_enter ls
指定pid, 采集1s:
[root@localhost /home/ahao.mah]
#perf stat -e syscalls:* -p 49770 sleep 1
perf stat的输出简单介绍
perf stat 的输出
[root@localhost /home/ahao.mah]
#perf stat ls
perf.data perf.data.old test test.c
Performance counter stats for 'ls':
1.256036 task-clock (msec) # 0.724 CPUs utilized
4 context-switches # 0.003 M/sec
0 cpu-migrations # 0.000 K/sec
285 page-faults # 0.227 M/sec
2,506,596 cycles # 1.996 GHz (87.56%)
1,891,085 stalled-cycles-frontend # 75.44% frontend cycles idle
1,526,425 stalled-cycles-backend # 60.90% backend cycles idle
1,551,244 instructions # 0.62 insns per cycle
# 1.22 stalled cycles per insn
309,841 branches # 246.682 M/sec
12,190 branch-misses # 3.93% of all branches (21.57%)
0.001733685 seconds time elapsed
1. 执行时间: 1.256036ms
2. 持续时间: 0.001733685 seconds time , 持续时间肯定大于执行时间, 因为cpu的调度策略,抢占等原因
3. cpu利用率: # 0.724 CPUs utilized 等于 ( 执行时间/持续时间)
perf stat 实现
tools/perf/builtin-stat.c
run_perf_stat
__run_perf_stat
print_stat
perf使用
#include <stdio.h>
void longa()
{
int i,j;
for(i = 0; i < 1000000; i++)
j=i; //am I silly or crazy? I feel boring and desperate.
}
void foo2()
{
int i;
for(i=0 ; i < 10; i++)
longa();
}
void foo1()
{
int i;
for(i = 0; i< 100; i++)
longa();
}
int main(void)
{
foo1();
foo2();
}
#perf stat -e kmem:* ./t1
Performance counter stats for './t1':
1 kmem:kmalloc
1,443 kmem:kmem_cache_alloc
85 kmem:kmalloc_node
85 kmem:kmem_cache_alloc_node
1,078 kmem:kfree
1,472 kmem:kmem_cache_free
37 kmem:mm_page_free
35 kmem:mm_page_free_batched
40 kmem:mm_page_alloc
70 kmem:mm_page_alloc_zone_locked
0 kmem:mm_page_pcpu_drain
0 kmem:mm_page_alloc_extfrag
0.382027010 seconds time elapsed
perf的开销
环境:
- kernel 3.10
- 上面运行java 满载733.3%
针对java 单个pid 进行perf record 采集, 启动阶段perf开销100%,稳定后7.5%
#perf sched record -p 49770
#ps -eo pmem,pcpu,args | grep perf | grep -v grep
0.0 0.0 [perf]
0.0 7.5 perf sched record -p 49770
使用perf全局采集syscall,针对单pid, 开销很大, 稳定在40%
#perf stat -e syscalls:* -p 49770 sleep 10
0.0 88.0 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 96.5 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 90.6 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 68.0 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 54.4 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 45.3 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 38.8 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 34.0 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 30.2 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 27.2 perf stat -e syscalls:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 24.7 perf stat -e syscalls:* -p 49770 sleep 10
全局采集syscall,开销稍微小点
#perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.0 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 6.0 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 3.0 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 2.0 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 1.5 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 1.0 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.8 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.7 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.6 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.6 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.5 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.5 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.4 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.4 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.4 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -e syscalls:* sleep 10
0.0 0.0 [perf]
0.0 0.4 perf stat -e syscalls:* sleep 10
最简单的perf stat,开销比较低
#perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.0 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 3.0 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 1.0 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.7 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.6 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.5 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.4 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.3 perf stat -p 49770 sleep 10
perf采集kmem相关event的开销
#perf stat -e kmem:* -p 49770 sleep 10
Performance counter stats for process id '49770':
163,603 kmem:kmalloc (100.00%)
484,012 kmem:kmem_cache_alloc (100.00%)
302,553 kmem:kmalloc_node (100.00%)
301,051 kmem:kmem_cache_alloc_node (100.00%)
263,768 kmem:kfree (100.00%)
774,941 kmem:kmem_cache_free (100.00%)
83,850 kmem:mm_page_free (100.00%)
799 kmem:mm_page_free_batched (100.00%)
83,064 kmem:mm_page_alloc (100.00%)
1,088 kmem:mm_page_alloc_zone_locked (100.00%)
403 kmem:mm_page_pcpu_drain (100.00%)
0 kmem:mm_page_alloc_extfrag
0.0 7.0 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 3.5 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 2.3 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 1.7 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 1.4 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 1.1 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 1.0 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.8 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.7 perf stat -e kmem:* -p 49770 sleep 10
0.0 0.0 [perf]
0.0 0.7 perf stat -e kmem:* -p 49770 sleep 10
REF
使用 OProfile for Linux on POWER 识别性能瓶颈:
https://www.ibm.com/developerworks/cn/linux/l-pow-oprofile/
http://abcdxyzk.github.io/blog/2015/07/27/debug-perf/
perf-tools:
https://www.slideshare.net/brendangregg/linux-performance-analysis-new-tools-and-old-secrets