• 线程


    进程是资源分配的最小单位,线程是cpu调度的最小单位。

    进程与线程的关系如图

     
    开启多线程
    # from threading import Thread
    # import time,os
    #
    # def fun(a,b):
    #     n = a+b
    #     print(n,os.getpid())
    #     time.sleep(1)
    #
    # for i in range(10):         #多线程
    #     t = Thread(target=fun,args=(i,5))
    #     t.start()
    #     print(i,os.getpid())      # 发现端口号都一样多线程都在一个进程中

    多进程与多线程对比

    from threading import Thread
    from multiprocessing import Process
    import time
    
    def fun(n):
        n + 1
    
    if __name__=='__main__':
        start = time.time()
        t_lst = []
        for i in range(100):
            t = Thread(target=fun,args=(i,))
            t.start()
            t_lst.append(t)
        for t in t_lst:t.join()
        t1 = time.time() - start
    
        start = time.time()
        t_lst = []
        for i in range(100):
            t = Process(target=fun,args=(i,))
            t.start()
            t_lst.append(t)
        for t in t_lst:t.join()
        t2 = time.time() - start
        print(t1,t2)
    ##0.015152931213378906    3.884697437286377
    ##可见多线程比多进程快得多
    **

    守护线程

    import time
    from threading import Thread
    
    def func1():
        while 1:
            print('*'*8)
            time.sleep(1)
    def func2():
        print('in func2')
        time.sleep(5)
    
    t = Thread(target=func1)
    t.daemon = True       # 守护线程
    t.start()
    
    t2 = Thread(target=func2)
    t2.start()

    守护线程:在主进程结束后,等待子线程结束后才结束

    (守护进程:在主进程代码执行完之后结束,不等待子进程)

    条件

    # from threading import Thread,Condition
    #
    # def func(con,i):
    #     con.acquire()
    #     con.wait()
    #     print('在第%s个循环里'%i)
    #     con.release()
    #
    #
    # con = Condition()
    # for i in range(10):
    #     Thread(target=func,args=(con,i)).start()
    # while 1:
    #     num = int(input('>>>'))
    #     con.acquire()
    #     con.notify(num)    # 创建num个钥匙,执行三个线程之后不归还
    #     con.release()

    定时器

    from threading import Timer
    import time
    
    def func():
        print('时间同步')
    
    while 1:
        Timer(2,func).start()   # 立刻启动线程2s后线程才执行
        time.sleep(2)

    定时,到了时间才执行。但线程是立即执行的

    线程池

    # import time
    # from concurrent.futures import ThreadPoolExecutor
    # def func(n):
    #     time.sleep(1)
    #     print(n)
    #     return n*n
    #
    # tpool = ThreadPoolExecutor(max_workers=5)
    # t_lst = []
    # for i in range(10):
    #     t = tpool.submit(func,i)
    #     t_lst.append(t)
    # tpool.shutdown()
    # print('主线程')
    # for t in t_lst:
    #     print('***',t.result())
    ThreadPoolExecutor 线程池 与 ProcessPoolExecutor导入的进程池用法一致

    回调函数
    import time
    from concurrent.futures import ThreadPoolExecutor
    def func(n):
        time.sleep(1)
        print(n)
        return n*n
    def call_back(m):
        print('%s的线程'%m.result())
    
    tpool = ThreadPoolExecutor(max_workers=5)
    
    for i in range(10):
        tpool.submit(func,i).add_done_callback(call_back)

    与进程中类似,只是调用方式不同。

    事件

    import time
    import random
    from threading import Thread,Event
    
    def connect_db(e):
        count = 0
        while count<3:
            e.wait(0.3)
            if e.is_set():
                print('连接成功')
                break
            else:
                count += 1
                print('第%s次连接失败'%count)
        else:
            raise TimeoutError('数据库连接超时')
        # raise 主动抛出异常
    
    def check_web(e):
        time.sleep(random.randint(0,3))
        e.set()
    
    e = Event()
    t1 = Thread(target=connect_db,args=(e,))
    t2 = Thread(target=check_web,args=(e,))
    t1.start()
    t2.start()

    线程锁

    # import time
    # from threading import Thread,Lock
    #
    # def fun(lock):
    #     lock.acquire()
    #     global n
    #     team = n
    #     time.sleep(0.2)
    #     n = team - 1
    #     lock.release()
    #
    # n = 10
    # t_lst = []
    # lock = Lock()
    # for i in range(10):
    #     t = Thread(target=fun,args=(lock,))
    #     t_lst.append(t)
    #     t.start()
    # for t in t_lst:
    #     t.join()
    # print(n)

    加锁 牺牲了执行效率 保障了数据安全

    互斥锁的死锁问题

    # from threading import Thread,Lock
    # import time
    # noodle_lock = Lock()
    # fork_lock = Lock()     # 互斥锁
    #
    # def eat1(name):
    #     noodle_lock.acquire()
    #     print('%s拿到面条了'%name)
    #     fork_lock.acquire()
    #     print('%s拿到叉子了'%name)
    #     print('%s吃到面了'%name)
    #     fork_lock.release()
    #     noodle_lock.release()
    #
    # def eat2(name):
    #     fork_lock.acquire()
    #     print('%s拿到叉子了'%name)
    #     time.sleep(1)
    #     noodle_lock.acquire()
    #     print('%s拿到面条了'%name)
    #     print('%s吃到面了'%name)
    #     fork_lock.release()
    #     noodle_lock.release()
    #
    #
    # Thread(target=eat1,args=('dahuang',)).start()
    # Thread(target=eat2,args=('大黄',)).start()
    # Thread(target=eat1,args=('蜘蛛',)).start()
    # Thread(target=eat2,args=('二狗',)).start()
    科学家吃面问题

    递归锁改进避免死锁

    from threading import Thread,RLock
    import time
    fork_lock = noodle_lock = RLock()   # 递归锁 一串钥匙
                    # 两层 一旦有人进入第一层 别人就无法再进入
                    # 不会出现上面互斥锁的死锁问题
    def eat1(name):
        noodle_lock.acquire()
        print('%s拿到面条了'%name)
        fork_lock.acquire()
        print('%s拿到叉子了'%name)
        print('%s吃到面了'%name)
        fork_lock.release()
        noodle_lock.release()
    
    def eat2(name):
        fork_lock.acquire()
        print('%s拿到叉子了'%name)
        time.sleep(1)
        noodle_lock.acquire()
        print('%s拿到面条了'%name)
        print('%s吃到面了'%name)
        fork_lock.release()
        noodle_lock.release()
    
    
    Thread(target=eat1,args=('dahuang',)).start()
    Thread(target=eat2,args=('大黄',)).start()
    Thread(target=eat1,args=('蜘蛛',)).start()
    Thread(target=eat2,args=('二狗',)).start()
    科学家吃面 递归锁

    队列

    三种常见队列

    # import queue
    # put方法
    # get方法
    # put_nowait()方法   不带待 不阻塞
    # get_nowait()方法
    
    # q = queue.Queue()     # 队列   先进先出
    
    # q = queue.LifoQueue()   # 栈    后进先出
    
    # q = queue.PriorityQueue()  
    # q.put((30,'a'))      # 左边优先级,右边进队列对的数据
    # 优先级队列  优先级高的先出
    # 数越小 优先级越高
    # 如果优先级相同 按ascll小的先出 
    
    # 以上三种队列都是安全的
  • 相关阅读:
    添加删除虚拟ip
    linux配置ant
    java类加载器
    java类的加载过程
    java反射机制
    spring原理
    spring-1
    spring所需包下载
    eclipse安装spring插件
    ubuntu下zaibbix3.2报警搭建
  • 原文地址:https://www.cnblogs.com/mu-tang/p/14203840.html
Copyright © 2020-2023  润新知