• 机器学习、深度学习概念术语的理解


    • feature learning:也叫 representation learning,表示学习;
    • deep learning:deep structural learning,deep machine learning;
      • hierarchical
    • neuron: nerve cell,神经细胞的别称;

    0. concepts

    • 机器学习的分类:

      • 预测(predicative),被称为 supervised learning
        • 如果输出为 categorical,问题又可称为 分类或者模式识别;
        • 如果输出为实数(real-valued),问题则被称为回归型问题
      • 描述(descriptive ),则被称为 unsupervised learning,也称为知识发现(knowledge discovery)
    • 可见节点,不可见结点;

      • visible neurons:输入层,输出层;
      • invisible neurons:隐层;
    • linear or non-linear:
      • a=σ(wa1+b)线性变换,非线性激励
      • wa1+b 线性变换,自然是线性的
      • σ(z):因为 S 型函数的定义所在,这一步转换又是非线性的

    1. retina layer、receptive fields


    这里写图片描述

    • m-1 层,也即最开始的层,代表 retina layer 视网膜层(表示整个网络结构的输入)
    • m 层,具有宽度为 3 的 receptive fields,也因此 m 层的神经元只连接着其邻接层(retina layer,m-1 层)中的 3 个神经元;
    • m+1 层具有同 m 层一样的连接性质,其上的 receptive fields 也是 3,但第 m+1 层关于输入层(m-1)层更大,是 5,
      • 参照其英文表述,their(m+1)receptive field with respect to the layer below(m 层)is 3,but their(m+1)receptive field with respect to the input (m-1) is larger(5)。

    2. end-to-end

    什么是end-to-end神经网络?

    端到端,更直观地说,对应着输入到输出(输入层到输出层),对于语音识别(speech recognition)的问题:

    • audio(X)⇒ phonemes ⇒ transcript (Y(X,Y)
    • audio ⇒ transcript



    经典机器学习方式是以人类的先验知识将 raw 数据预处理成 feature,然后对feature 进行分类。分类结果取决于 feature 的好坏。所以过去的机器学习专家将大部分时间花费在设计 feature 上。那时的机器学习有个更合适的名字叫 feature engineering。

    利用神经网络,让网络自己学习如何抓取 feature 效果更佳。于是兴起了representation learning。这种方式对数据的拟合更加灵活。

    网络进一步加深,多层次概念的 representation learning (也就是著名的 deep learning)将识别率达到了另一个新高度。

    end to end的好处:通过缩减人工预处理和后续处理,尽可能使模型从原始输入到最终输出,给模型更多可以根据数据自动调节的空间,增加模型的整体契合度

  • 相关阅读:
    中国登山队员首次登上地球之巅珠穆朗玛峰的时间与意义及影响 (转)
    兰戈利尔人(斯蒂芬.金)
    冥界系列一:麝月 (作者:钱其强)
    席慕容独白
    【心理寓言】小偷在鸡舍偷了只鸡
    美国恐怖故事第一季事件时间表
    大学生逃课的暴笑理由
    原来他们四个也是有故事的男人
    爆笑:七八十年代各地最流行顺口溜 网友:太经典了
    中国的世界之最
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9422992.html
Copyright © 2020-2023  润新知