今天介绍 logistic regression,虽然里面有 regression 这个词,但是这其实是一种分类的方法,这个分类方法输出的也是 0-1 之间的一个数,可以看成是一种概率输出,这个分类器利用一种 BP 迭代和随机梯度下降的方法来训练求得参数和建立分类模型。
首先来看看这个分类器用到的主要函数,即 sigmoid 函数:
这个函数有一个很好的特性,就是它的导数,
下面看看,如何利用这个函数来做分类,假设样本为向量
我们可以通过不断的调整
而每一部分的偏导数都可以求得:
根据求得的偏导数,可以对权重系数进行更新:
下面给出一个用 logistic regression 做分类的例子:
import numpy as np
from sklearn import datasets
def Sigmoid(x):
return 1.0/(1 + np.exp(-x))
def Generate_label(y, N_class):
N_sample = len(y)
label = np.zeros((N_sample, N_class))
for ii in range(N_sample):
label[ii, int(y[ii])]=1
return label
# load the iris data
iris = datasets.load_iris()
x_data = iris.data
y_label = iris.target
class_name = iris.target_names
n_sample = len(x_data)
n_class = len(set(y_label))
np.random.seed(0)
index = np.random.permutation(n_sample)
x_data = x_data[index]
y_label = y_label[index].astype(np.float)
train_x = x_data[: int(.8 * n_sample)]
train_y = y_label[: int( .8 * n_sample)]
test_x = x_data[int(.8 * n_sample) :]
test_y = y_label[int(.8 * n_sample) :]
train_label = Generate_label(train_y, n_class)
test_label = Generate_label(test_y, n_class)
# training process
D = train_x.shape[1]
W = 0.01 * np.random.rand(D, n_class)
b = np.zeros((1, n_class))
step_size = 1e-1
reg = 1e-3
train_sample = train_x.shape[0]
batch_size = 10
num_batch = train_sample / batch_size
train_epoch = 1000
for ii in range (train_epoch):
for batch_ii in range(num_batch):
batch_x = train_x[batch_ii * batch_size:
(batch_ii+1) * batch_size, :]
batch_y = train_label[batch_ii * batch_size:
(batch_ii+1) * batch_size, :]
scores = np.dot(batch_x, W) + b
y_out = Sigmoid(scores)
e = y_out - batch_y
dataloss = 0.5 * np.sum(e*e) / batch_size
regloss = 0.5 * reg * np.sum(W*W)
L = dataloss + regloss
dscores = e * y_out * (1 - y_out) / batch_size
dw = np.dot(batch_x.T, dscores)
db = np.sum(dscores, axis=0, keepdims=True)
dw += reg*W
W = W - step_size * dw
b = b - step_size * db
if (ii % 10 == 0):
print 'the training loss is: %.4f' % L
# test process
scores = np.dot(test_x, W) + b
y_out = Sigmoid(scores)
predict_out = np.argmax(y_out, axis=1)
print 'test accuracy: %.2f' % (np.mean(predict_out == test_y))