1. loc——通过行标签索引行数据
1.1 loc[1]表示索引的是第1行(index 是整数)
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = [0,1]
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''
1.2 loc[‘d’]表示索引的是第’d’行(index 是字符)
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d']
'''
a 1
b 2
c 3
'''
1.3 如果想索引列数据,像这样做会报错
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['a']
'''
KeyError: 'the label [a] is not in the [index]'
'''
1.4 loc可以获取多行数据
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d':]
'''
a b c
d 1 2 3
e 4 5 6
'''
1.5 loc扩展——索引某行某列
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d',['b','c']]
'''
b 2
c 3
'''
1,6 loc扩展——索引某列
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[:,['c']]
'''
c
d 3
e 6
'''
当然获取某列数据最直接的方式是df.[列标签],但是当列标签未知时可以通过这种方式获取列数据。
需要注意的是,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。
2. iloc——通过行号获取行数据
2.1 想要获取哪一行就输入该行数字
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''
2.2 通过行标签索引会报错
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc['a']
'''
TypeError: cannot do label indexing on <class 'pandas.core.index.Index'> with these indexers [a] of <type 'str'>
'''
2.3 同样通过行号可以索引多行
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[0:]
'''
a b c
d 1 2 3
e 4 5 6
'''
2.4 iloc索引列数据
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[:,[1]]
'''
b
d 2
e 5
'''
3. ix——结合前两种的混合索引
3.1 通过行号索引
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix[1]
'''
a 4
b 5
c 6
'''
3.2 通过行标签索引
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix['e']
'''
a 4
b 5
c 6
'''