• python库学习笔记——Pandas数据索引:ix、loc、iloc区别


    Different Choices for Indexing

    1. loc——通过行标签索引行数据

    1.1 loc[1]表示索引的是第1行(index 是整数)

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = [0,1]
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc[1]
    '''
    a    4
    b    5
    c    6
    '''

    1.2 loc[‘d’]表示索引的是第’d’行(index 是字符)

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc['d']
    '''
    a    1
    b    2
    c    3
    '''

    1.3 如果想索引列数据,像这样做会报错

      
    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc['a']
    '''
    KeyError: 'the label [a] is not in the [index]'
    '''

    1.4 loc可以获取多行数据

      

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc['d':]
    '''
       a  b  c
    d  1  2  3
    e  4  5  6
    '''

    1.5 loc扩展——索引某行某列

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc['d',['b','c']]
    '''
    b    2
    c    3
    '''

    1,6 loc扩展——索引某列

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc[:,['c']]
    '''
       c
    d  3
    e  6
    '''

    当然获取某列数据最直接的方式是df.[列标签],但是当列标签未知时可以通过这种方式获取列数据。

    需要注意的是,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。

    2. iloc——通过行号获取行数据

    2.1 想要获取哪一行就输入该行数字

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.loc[1]
    '''
    a    4
    b    5
    c    6
    '''

    2.2 通过行标签索引会报错

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.iloc['a']
    '''
    TypeError: cannot do label indexing on <class 'pandas.core.index.Index'> with these indexers [a] of <type 'str'>
    '''

    2.3 同样通过行号可以索引多行

      
    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.iloc[0:]
    '''
       a  b  c
    d  1  2  3
    e  4  5  6
    '''

    2.4 iloc索引列数据

      

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.iloc[:,[1]]
    '''
       b
    d  2
    e  5
    '''

    3. ix——结合前两种的混合索引

    3.1 通过行号索引

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.ix[1]
    '''
    a    4
    b    5
    c    6
    '''

    3.2 通过行标签索引

    import pandas as pd
    data = [[1,2,3],[4,5,6]]
    index = ['d','e']
    columns=['a','b','c']
    df = pd.DataFrame(data=data, index=index, columns=columns)
    print df.ix['e']
    '''
    a    4
    b    5
    c    6
    '''

  • 相关阅读:
    MySQL 列子查询及 IN、ANY、SOME 和 ALL 操作符的使用
    MySQL 标量子查询
    MySQL 子查询(subquery)语法与用法实例
    如何上传本地音乐获取MP3外链(欢迎分享和转载)
    RabbitMQ与Kafka的区别及其简单原理实现
    MySQL中varchar和char的区别
    MySQL降低insert, update, delete的优先级来优化性能
    Eclipse代码自动提示
    Java生成XML文件
    Java读取XML文件
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9411648.html
Copyright © 2020-2023  润新知