• POJ1066 Treasure Hunt


    嘟嘟嘟


    题意看题中的图就行:问你从给定的点出发最少需要穿过几条线段才能从正方形中出去(边界也算)。


    因为(n)很小,可以考虑比较暴力的做法。枚举在边界中的哪一个点离开的。也就是枚举四周的点((x, y)),并和起点((x_0, y_0))连成线段,求和多少条线段相交。
    但是因为点可以是实数,所以不知道怎么枚举。不过想想就知道,同一个区间中的点是等价的。因此我们只要枚举线段的端点即可。
    至于判断线段相交,用叉积实现:对于线段(AB)(CD),如果((overrightarrow{AB} imes overrightarrow{AC}) * (overrightarrow{AB} imes overrightarrow{AD}) < 0)((overrightarrow{CD} imes overrightarrow{CA}) * (overrightarrow{CD} imes overrightarrow{CB}) < 0),则线段(AB)(CD)相交。


    (别忘了(n = 0)的情况……)

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 50;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n;
    struct Vec
    {
      db x, y;
      db operator * (const Vec& oth)const
      {
        return x * oth.y - oth.x * y;
      }
    };
    struct Point
    {
      db x, y;
      Vec operator - (const Point& oth)const
      {
        return (Vec){x - oth.x, y - oth.y};
      }
    }a[maxn], b[maxn], P;
    
    int solve(Point A, Point B)
    {
      Vec AB = B - A;
      int ret = 0;
      for(int i = 1; i <= n; ++i)
        {
          Vec AC = a[i] - A, AD = b[i] - A;
          Vec CD = b[i] - a[i], CB = B - a[i];
          if((AB * AC) * (AB * AD) < -eps && (CD * AC) * (CD * CB) > eps) ret++;
        }
      return ret;
    }
    
    int ans = INF;
    
    int main()
    {
      n = read();
      for(int i = 1; i <= n; ++i)
        a[i].x = read(), a[i].y = read(), b[i].x = read(), b[i].y = read();
      scanf("%lf%lf", &P.x, &P.y);
      for(int i = 1; i <= n; ++i)
        {
          ans = min(ans, solve(a[i], P));
          ans = min(ans, solve(b[i], P));
        }
      if(!n) ans = 0;
      printf("Number of doors = ");
      write(ans + 1), enter;
      return 0;
    }
    
  • 相关阅读:
    DAY9 函数初识(各种参数的用法)
    CSS背景
    HTML/CSS 练习
    从JDBC到commons-DBUtils
    SQL
    MYSQL数据库基本操作
    JDBC
    Stream数据流(Collection接口扩充)
    Stack栈
    Map集合接口
  • 原文地址:https://www.cnblogs.com/mrclr/p/9977665.html
Copyright © 2020-2023  润新知