嘟嘟嘟
题意看题中的图就行:问你从给定的点出发最少需要穿过几条线段才能从正方形中出去(边界也算)。
因为(n)很小,可以考虑比较暴力的做法。枚举在边界中的哪一个点离开的。也就是枚举四周的点((x, y)),并和起点((x_0, y_0))连成线段,求和多少条线段相交。
但是因为点可以是实数,所以不知道怎么枚举。不过想想就知道,同一个区间中的点是等价的。因此我们只要枚举线段的端点即可。
至于判断线段相交,用叉积实现:对于线段(AB)和(CD),如果((overrightarrow{AB} imes overrightarrow{AC}) * (overrightarrow{AB} imes overrightarrow{AD}) < 0)且((overrightarrow{CD} imes overrightarrow{CA}) * (overrightarrow{CD} imes overrightarrow{CB}) < 0),则线段(AB)和(CD)相交。
(别忘了(n = 0)的情况……)
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 50;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
struct Vec
{
db x, y;
db operator * (const Vec& oth)const
{
return x * oth.y - oth.x * y;
}
};
struct Point
{
db x, y;
Vec operator - (const Point& oth)const
{
return (Vec){x - oth.x, y - oth.y};
}
}a[maxn], b[maxn], P;
int solve(Point A, Point B)
{
Vec AB = B - A;
int ret = 0;
for(int i = 1; i <= n; ++i)
{
Vec AC = a[i] - A, AD = b[i] - A;
Vec CD = b[i] - a[i], CB = B - a[i];
if((AB * AC) * (AB * AD) < -eps && (CD * AC) * (CD * CB) > eps) ret++;
}
return ret;
}
int ans = INF;
int main()
{
n = read();
for(int i = 1; i <= n; ++i)
a[i].x = read(), a[i].y = read(), b[i].x = read(), b[i].y = read();
scanf("%lf%lf", &P.x, &P.y);
for(int i = 1; i <= n; ++i)
{
ans = min(ans, solve(a[i], P));
ans = min(ans, solve(b[i], P));
}
if(!n) ans = 0;
printf("Number of doors = ");
write(ans + 1), enter;
return 0;
}