• UVA12169 Disgruntled Judge


    嘟嘟嘟

    枚举a, 求出b,然后代入看a和b是否是对的。

    具体方法:通过x1和x3可以求出b :

      x2 = (a * x1 + b) % mod    (1)

      x3 = (a * x2 + b) % mod    (2)

    把(2)代入(1)得

      x3 = (a2 * x1 + a * b + b) % mod

    整理得

      x3 + k * mod = a2 * x1 + b * (a + 1)

    于是得到了一个只有两个参数的不定方程,用exgcd求解即可。

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<cstdlib>
     7 #include<cctype>
     8 #include<stack>
     9 #include<queue>
    10 #include<vector>
    11 using namespace std;
    12 #define enter puts("")
    13 #define space putchar(' ')
    14 #define Mem(a, x) memset(a, x, sizeof(a))
    15 #define rg register
    16 typedef long long ll;
    17 typedef double db;
    18 const int INF = 0x3f3f3f3f;
    19 const db eps = 1e-8;
    20 const int maxn = 1e5 + 5;
    21 const int mod = 10001;
    22 inline ll read()
    23 {
    24     ll ans = 0;
    25     char ch = getchar(), las = ' ';
    26     while(!isdigit(ch)) las = ch, ch = getchar();
    27     while(isdigit(ch)) ans = ans * 10 + ch - '0', ch = getchar();
    28     if(las == '-') ans = -ans;
    29     return ans;
    30 }
    31 inline void write(ll x)
    32 {
    33     if(x < 0) putchar('-'), x = -x;
    34     if(x >= 10) write(x / 10);
    35     putchar(x % 10 + '0');
    36 }
    37 
    38 int n;
    39 ll f[maxn], g[maxn];
    40 
    41 void exgcd(ll a, ll b, ll &x, ll &y, ll &d)
    42 {
    43     if(!b) d = a, x = 1, y = 0;
    44     else exgcd(b, a % b, y, x, d), y -= a / b * x;
    45 }
    46 
    47 bool judge(ll a, ll b)
    48 {
    49     g[1] = (a * f[1] + b) % mod;
    50     for(int i = 2; i <=n; ++i)
    51     {
    52         int tp = (a * g[i - 1] + b) % mod;
    53         if(tp != f[i]) return 0;
    54         g[i] = (a * tp + b) % mod;
    55     }
    56     return 1;
    57 }
    58 
    59 int main()
    60 {
    61     n = read();
    62     for(int i = 1; i <= n; ++i) f[i] = read();
    63     for(int i = 1; i < mod; ++i)
    64     {
    65     ll x, y, a = i + 1, b = mod, d = f[2] - i * i * f[1], Gcd;
    66     exgcd(a, b, x, y, Gcd);
    67     if(d % Gcd) continue;
    68     x = x * d / Gcd % mod;
    69     if(judge(i, x))
    70     {
    71         for(int j = 1; j <= n; ++j) write(g[j]), enter;
    72         return 0;
    73     } 
    74     }
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    CentOS下使用Jexus部署.NetFramework站点 (二)
    CentOS下使用Jexus部署.NetFramework站点 (一)
    RDLC报表纵向合并单元格。
    Access to the path '' is denied.解决方案
    7_文件上传.md
    python接口自动化unittest+HTMLrunner
    pytest命令行执行
    python+requests接口自动化测试框架实例详解教程123
    python+requests接口自动化测试框架实例详解教程
    python进行接口请求,第一个接口返回的数据作为第二个参数的入参
  • 原文地址:https://www.cnblogs.com/mrclr/p/9753550.html
Copyright © 2020-2023  润新知